Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 15:211:195-202.
doi: 10.1016/j.saa.2018.11.063. Epub 2018 Dec 1.

Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis

Affiliations

Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis

A Dankowska et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

The potential of selected spectroscopic methods - UV-Vis, synchronous fluorescence and NIR as well a data fusion of the measurements by these methods - for the classification of tea samples with respect to the production process was examined. Four classification methods - Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Regularized Discriminant Analysis (RDA) and Support Vector Machine (SVM) - were used to analyze spectroscopic data. PCA analysis was applied prior to classification methods to reduce multidimensionality of the data. Classification error rates were used to evaluate the performance of these methods in the classification of tea samples. The results indicate that black, green, white, yellow, dark, and oolong teas, which are produced by different methods, are characterized by different UV-Vis, fluorescence, and NIR spectra. The lowest error rates in the calibration and validation data sets for individual spectroscopies and data fusion models were obtained with the use of the QDA and SVM methods, and did not exceed 3.3% and 0.0%, respectively. The lowest classification error rates in the validation data sets for individual spectroscopies were obtained with the use of RDA (12,8%), SVM (6,7%), and QDA (2,7%), for the UV-Vis, SF, and NIR spectroscopies, respectively. NIR spectroscopy combined with QDA outperformed other individual spectroscopic methods. Very low classification errors in the validation data sets - below 3% - were obtained for all the data fusion data sets (SF + UV-Vis, SF + NIR, NIR + UV-Vis combined with the SVM method). The results show that UV-Vis, fluorescence and near infrared spectroscopies may complement each other, giving lower errors for the classification of tea types.

Keywords: Data fusion; Fluorescence spectroscopy; Food adulteration; Multivariate data analysis; NIR; Teas classification; UV–Vis.

PubMed Disclaimer

MeSH terms

LinkOut - more resources