Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits
- PMID: 30546119
- PMCID: PMC6292899
- DOI: 10.1038/s41598-018-36160-2
Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 reveals the diverse nitrogen cycle mechanisms and habitat-specific traits
Abstract
Mangrove ecosystems are characteristic of the high salinity, limited nutrients and S-richness. Marichromatium gracile YL28 (YL28) isolated from mangrove tolerates the high concentrations of nitrite and sulfur compounds and efficiently eliminates them. However, the molecular mechanisms of nitrite and sulfur compounds utilization and the habitat adaptation remain unclear in YL28. We sequenced YL28 genome and further performed the comparative genome analysis in 36 purple bacteria including purple sulfur bacteria (PSB) and purple non-sulfur bacteria (PNSB). YL28 has 6 nitrogen cycle pathways (up to 40 genes), and possibly removes nitrite by denitrification, complete assimilation nitrate reduction and fermentative nitrate reduction (DNRA). Comparative genome analysis showed that more nitrogen utilization genes were detected in PNSB than those in PSB. The partial denitrification pathway and complete assimilation nitrate reduction were reported in PSB and DNRA was reported in purple bacteria for the first time. The three sulfur metabolism genes such as oxidation of sulfide, reversed dissimilatory sulfite reduction and sox system allowed to eliminate toxic sulfur compounds in the mangrove ecosystem. Several unique stress response genes facilitate to the tolerance of the high salinity environment. The CRISPR systems and the transposon components in genomic islands (GIs) likely contribute to the genome plasticity in purple bacteria.
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Effects of Supplement of Marichromatium gracile YL28 on Water Quality and Microbial Structures in Shrimp Mariculture Ecosystems.Genes (Basel). 2020 Dec 30;12(1):40. doi: 10.3390/genes12010040. Genes (Basel). 2020. PMID: 33396721 Free PMC article.
-
Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.World J Microbiol Biotechnol. 2017 Jun;33(6):113. doi: 10.1007/s11274-017-2280-z. Epub 2017 May 3. World J Microbiol Biotechnol. 2017. PMID: 28470424
-
Effects of Marichromatium gracile YL28 on the nitrogen management in the aquaculture pond water.Bioresour Technol. 2019 Nov;292:121917. doi: 10.1016/j.biortech.2019.121917. Epub 2019 Jul 27. Bioresour Technol. 2019. PMID: 31408778
-
Sulfur metabolism in phototrophic sulfur bacteria.Adv Microb Physiol. 2009;54:103-200. doi: 10.1016/S0065-2911(08)00002-7. Adv Microb Physiol. 2009. PMID: 18929068 Review.
-
Evolution of bacterial denitrification and denitrifier diversity.Antonie Van Leeuwenhoek. 1982;48(6):585-607. doi: 10.1007/BF00399543. Antonie Van Leeuwenhoek. 1982. PMID: 6762849 Review.
Cited by
-
Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation.BMC Genomics. 2021 Jun 22;22(1):464. doi: 10.1186/s12864-021-07766-0. BMC Genomics. 2021. PMID: 34157973 Free PMC article.
-
Effects of Supplement of Marichromatium gracile YL28 on Water Quality and Microbial Structures in Shrimp Mariculture Ecosystems.Genes (Basel). 2020 Dec 30;12(1):40. doi: 10.3390/genes12010040. Genes (Basel). 2020. PMID: 33396721 Free PMC article.
-
Genome Sequence of the Acidophilic Nonsulfur Purple Photosynthetic Alphaproteobacterium Rhodovastum atsumiense, a Divergent Member of the Acetobacteraceae Family.Microbiol Resour Announc. 2020 Feb 6;9(6):e01541-19. doi: 10.1128/MRA.01541-19. Microbiol Resour Announc. 2020. PMID: 32029562 Free PMC article.
-
Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects.Microorganisms. 2024 Jan 6;12(1):118. doi: 10.3390/microorganisms12010118. Microorganisms. 2024. PMID: 38257946 Free PMC article. Review.
-
Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri.Sci Total Environ. 2022 Jan 10;803:150006. doi: 10.1016/j.scitotenv.2021.150006. Epub 2021 Aug 30. Sci Total Environ. 2022. PMID: 34487902 Free PMC article.
References
-
- Trüper, H. G. & Pfennig, N. Characterization and identification of the anoxygenic phototrophic bacteria, 1. [Starr, M. P., Stolp, H., Trüper, H. G., Balows, A. & Schlegel, H. G. (eds)] The prokaryotes18, 299–312. (Springer, Berlin, Heidelberg, 1981).
-
- Zhao JY, et al. Identification and characterization of a purple sulfur bacterium from mangrove with rhodopin as predominant carotenoid. Acta Microbiologica Sinica. 2011;51(10):1318–1325. - PubMed
-
- Jiang P, Hong X, Zhao CG, Yang SP. Reciprocal transformation of Inorganic nitrogen by Resting Cells of Marichromatium gracile YL28. Journal of Huaqiao University. 2015;36(2):45–52.
-
- Jiang P, Zhao CG, Jia YQ, Yang SP. Inorganic nitrogen removal by a marine purple sulfur bacterium capable of growth on nitrite as sole nitrogen source. Microbiology China. 2014;41(5):824–831.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous