Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Feb 1;14(3):389-397.
doi: 10.1002/asia.201801648. Epub 2019 Jan 11.

Nanopore-Based Confined Spaces for Single-Molecular Analysis

Affiliations
Review

Nanopore-Based Confined Spaces for Single-Molecular Analysis

Jiajun Wang et al. Chem Asian J. .

Abstract

The field of nanopore sensing at the single-molecular level is in a "boom" period. Such nanopores, which are either composed of biological materials or are fabricated from solid-state substrates, offer a unique confined space that is compatible with the single-molecular scale. Under the influence of an electrical field, such single-biomolecular interfaces can read single-molecular information and, if appropriately fine-tuned, each molecule plays its individual ionic rhythm to compose a "molecular symphony". Over the past few decades, many research groups have worked on nanopore-based single-molecular sensors for a range of thrilling chemical and clinical applications. Furthermore, for the past decade, we have also focused on nanopore-based sensors. In this Minireview, we summarize the recent developments in fundamental research and applications in this area, along with data algorithms and advances in hardware, which act as infrastructure for the electrochemical analysis.

Keywords: biosensors; electrochemistry; interfaces; nanopores; sensors.

PubMed Disclaimer

LinkOut - more resources