Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 28:443:167-178.
doi: 10.1016/j.canlet.2018.11.037. Epub 2018 Dec 11.

Melatonin inhibits MLL-rearranged leukemia via RBFOX3/hTERT and NF-κB/COX-2 signaling pathways

Affiliations

Melatonin inhibits MLL-rearranged leukemia via RBFOX3/hTERT and NF-κB/COX-2 signaling pathways

Yan-Lai Tang et al. Cancer Lett. .

Abstract

MLL-rearranged leukemia is an aggressive malignancy associated with poor outcome, which is refractory to conventional treatment. Melatonin has been proven to exert anti-tumor activity, but the effect of melatonin on MLL-r leukemia and the underlying mechanism remain poorly understood. In this study, melatonin inhibited cell proliferation and induced apoptosis by activating the caspase-dependent apoptotic pathway in MLL-r leukemia cells. Mechanistic investigations revealed that melatonin suppressed the expression of hTERT by abrogating the binding activity of RBFOX3 to the hTERT promoter. Melatonin also blocked NF-κB nuclear translocation and suppressed NF-κB binding to the COX-2 promoter, thereby suppressing the expression of COX-2. In addition, clinical samples revealed that melatonin exerts anti-leukemic activity in primary MLL-r leukemia blasts ex vivo. In vivo, the mice treated with melatonin experienced a larger reduction in leukemic burden than the control group in a MLL-r leukemia xenograft mouse model. Collectively, these results suggest that melatonin inhibits MLL-rearranged leukemia through suppressing the RBFOX3/hTERT and NF-κB/COX-2 signaling pathways. Our findings provide new insights into the role of melatonin for MLL-r leukemia treatment.

Keywords: Apoptosis; Human telomerase reverse transcriptase; Mixed lineage leukemia; P65; Proliferation.

PubMed Disclaimer

Publication types

MeSH terms