Targeting Cancer Stem Cells to Overcome Chemoresistance
- PMID: 30551640
- PMCID: PMC6321478
- DOI: 10.3390/ijms19124036
Targeting Cancer Stem Cells to Overcome Chemoresistance
Abstract
Cancers are heterogeneous at the cell level, and the mechanisms leading to cancer heterogeneity could be clonal evolution or cancer stem cells. Cancer stem cells are resistant to most anti-cancer treatments and could be preferential targets to reverse this resistance, either targeting stemness pathways or cancer stem cell surface markers. Gold nanoparticles have emerged as innovative tools, particularly for photo-thermal therapy since they can be excited by laser to induce hyperthermia. Gold nanoparticles can be functionalized with antibodies to specifically target cancer stem cells. Preclinical studies using photo-thermal therapy have demonstrated the feasibility of targeting chemo-resistant cancer cells to reverse clinical chemoresistance. Here, we review the data linking cancer stem cells and chemoresistance and discuss the way to target them to reverse resistance. We particularly focus on the use of functionalized gold nanoparticles in the treatment of chemo-resistant metastatic cancers.
Keywords: cancer; cancer stem cell; chemoresistance; functionalization; gold nanoparticles; photo-thermal therapy.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Gerlinger M., Rowan A.J., Horswell S., Math M., Larkin J., Endesfelder D., Gronroos E., Martinez P., Matthews N., Stewart A., et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012;366:883–892. doi: 10.1056/NEJMoa1113205. - DOI - PMC - PubMed
-
- Gerlinger M., Horswell S., Larkin J., Rowan A.J., Salm M.P., Varela I., Fisher R., McGranahan N., Matthews N., Santos C.R., et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 2014;46:225–233. doi: 10.1038/ng.2891. - DOI - PMC - PubMed
-
- Burke A.R., Singh R.N., Carroll D.L., Wood J.C., D’Agostino R.B., Jr., Ajayan P.M., Torti F.M., Torti S.V. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials. 2012;33:2961–2970. doi: 10.1016/j.biomaterials.2011.12.052. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
