Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988 Jul-Aug;10(4):699-711.
doi: 10.1093/clinids/10.4.699.

Penicillin-binding proteins of gram-negative bacteria

Affiliations
Review

Penicillin-binding proteins of gram-negative bacteria

B G Spratt et al. Rev Infect Dis. 1988 Jul-Aug.

Abstract

beta-Lactam antibiotics exert their antibacterial effects by inactivating the high-molecular-weight penicillin-binding proteins (PBPs) that are responsible for the final stages of peptidoglycan biosynthesis. The availability of the amino acid sequences of several low-molecular-weight PBPs, high-molecular-weight PBPs, and active-site serine beta-lactamases has provided evidence that these groups of enzymes have a common, but distant, evolutionary origin. This view is strongly supported by the recent finding of a similarity in the three-dimensional structures of a low-molecular-weight PBP and class A beta-lactamases. The high-molecular-weight PBPs of Escherichia coli are believed to possess an amino-terminal peptidoglycan transglycosylase domain and a carboxy-terminal penicillin-sensitive transpeptidase domain. These enzymes are inserted in the cytoplasmic membrane only at their amino termini, and water-soluble forms have been obtained that should be suitable for crystallization and X-ray analysis. Resistance to beta-lactam antibiotics mediated by alterations of PBPs has been reported in some gram-negative bacteria. In isolates of Neisseria gonorrhoeae with chromosomally mediated resistance, penicillin-resistant PBPs have arisen from the introduction of multiple amino acid substitutions within the transpeptidase domain of the enzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources