Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb;71(1):175-182.
doi: 10.1016/j.pharep.2018.10.003. Epub 2018 Oct 3.

Exenatide modulates expression of metalloproteinases and their tissue inhibitors in TNF-α stimulated human retinal pigment epithelial cells

Affiliations

Exenatide modulates expression of metalloproteinases and their tissue inhibitors in TNF-α stimulated human retinal pigment epithelial cells

Wojciech Garczorz et al. Pharmacol Rep. 2019 Feb.

Abstract

Background: Diabetic retinopathy (DR) is one of the most common complications of diabetes and the leading cause of acquired blindness in adults. In diabetic patients hyperglycemia induces complex metabolic abnormalities affecting retinal homeostasis, and promotes retinal inflammation and angiogenesis. Incretin mimetic drugs such exenatide, are a relatively new group of drugs used in the treatment of diabetes. We investigated the potential direct effects of exenatide on human retinal pigment epithelium (HRPE).

Methods: cAMP production was measured after stimulation of HRPE cells with GLP-1 and exenatide. Intracellular signaling pathways were also examined. HRPE cells were stimulated with TNF-α and subsequently incubated with exenatide. The concentration of metalloproteinases, MMP-1, MMP-2 and MMP-9, and tissue inhibitors of metalloproteinases, TIMP-1, TIMP-2, and TIMP-3 were evaluated. Viability, cytotoxicity and caspase 3/7 activation were determined. Activity of dipeptidyl peptidase-4 (DPP-4), an enzyme involved in GLP-1 inactivation, was also determined.

Results: Both GLP-1 and exenatide stimulation in HRPE cells caused no effect in cAMP levels suggesting alternative signaling pathways. Signaling pathway analysis showed that exenatide reduced phosphorylation of Akt-Ser473, PRAS40, SAPK/JNK, Bad, and S6 proteins but not Akt-Thr308. Exenatide also decreased MMP-1, MMP-9, and TIMP-2 protein levels whereas MMP-2 level in HRPE cells was increased. Finally, we show that exenatide decreased the activity of DPP-4 in TNF-α stimulated HRPE cells.

Conclusions: These findings indicate that exenatide modulates regulation of extracellular matrix components involved in retinal remodeling.

Keywords: Diabetes; Diabetic retinopathy; Exenatide; Human retinal pigment epithelium; Incretin; MMP.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources