Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May;49(9):1157-1170.
doi: 10.1111/ejn.14307. Epub 2019 Jan 1.

The overlooked aspect of excitotoxicity: Glutamate-independent excitotoxicity in traumatic brain injuries

Affiliations
Review

The overlooked aspect of excitotoxicity: Glutamate-independent excitotoxicity in traumatic brain injuries

Joel Tehse et al. Eur J Neurosci. 2019 May.

Abstract

Traumatic brain injury (TBI) is a leading major cause of morbidity and mortality in youth and individuals under 45 year age. A wide variety of cellular and molecular mechanisms have been identified contributing to the pathogenesis of TBI. A better understanding of the pathophysiology behind TBI is essential for providing more effective treatment. Excitotoxicity as one of the secondary molecular events is a major contributing factor in apoptosis and neuronal death following the initial injury in TBI. Excitotoxicity is the rapid overload and influx of calcium into the cell cytoplasm, activating a series of deleterious signaling cascades causing the cell to undergo apoptosis. Conventional understanding is that the rapid influx of calcium is initiated through glutamate release. However, there are overlooked glutamate-independent mechanisms that cause the rapid calcium influx into the neuronal cytoplasm, evoking or contributing to excitotoxicity. Therefore, the focus of this review will be on the role of the glutamate-independent excitotoxic mechanisms of the mechanosensitive response of NMDA receptors, mechanoporation of the cell membrane, ischemia, and the release of calcium from intracellular stores. In conclusion, the shear and stretch forces during a TBI event may result in the mechanosensitive activation of NMDA receptors which contribute to glutamate-independent excitotoxicity.

Keywords: brain ischemia; excitotoxicity; intracellular calcium stores; mechanoporation; traumatic brain injury.

PubMed Disclaimer

Publication types

LinkOut - more resources