Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Nov;31(47):e1804595.
doi: 10.1002/adma.201804595. Epub 2018 Dec 17.

Strategies to Improve Luminescence Efficiency of Metal-Halide Perovskites and Light-Emitting Diodes

Affiliations
Review

Strategies to Improve Luminescence Efficiency of Metal-Halide Perovskites and Light-Emitting Diodes

Young-Hoon Kim et al. Adv Mater. 2019 Nov.

Abstract

Metal-halide perovskites (MHPs) are well suited to be vivid natural color emitters due to their superior optical and electrical properties, such as narrow emission linewidths, easily and widely tunable emission wavelengths, low material cost, and high charge carrier mobility. Since the first development of MHP light-emitting diodes (PeLEDs) in 2014, many researchers have tried to understand the properties of MHP emitters and the limitations to luminescence efficiency (LE) of PeLEDs, and have devoted efforts to increase the LE of MHP emitters and PeLEDs. Within three and half years, PeLEDs have shown rapidly increased LE from external quantum efficiency ≈0.1% to ≈14.36%. Herein, the factors that limit the LE of PeLEDs are reviewed; the factors are characterized into the following groups: i) photophysical properties of MHP crystals, ii) morphological factors of MHP layers, and iii) problems caused by device architectures. Then, the strategies to overcome those luminescence-limiting factors in MHP emitters and PeLEDs are critically evaluated. Finally, research directions to further increase the LE of MHP emitters and the potential of MHPs as a core component in next-generation displays and solid-state lightings are suggested.

Keywords: electroluminescence efficiency; light-emitting diodes; metal-halide perovskite; next-generation emitters; photoluminescence quantum efficiency.

PubMed Disclaimer

References

    1. Y.-H. Kim, H. Cho, T.-W. Lee, Proc. Natl. Acad. Sci. USA 2016, 113, 11694.
    1. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
    1. Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S. H. Im, T.-W. Lee, Adv. Mater. 2015, 27, 1248.
    1. H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222.
    1. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.

LinkOut - more resources