Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;280(1):20-34.
doi: 10.1002/jmor.20907.

Morphological variation and covariation in mandibular molars of platyrrhine primates

Affiliations

Morphological variation and covariation in mandibular molars of platyrrhine primates

Mónica Nova Delgado et al. J Morphol. 2019 Jan.

Abstract

Molars are highly integrated biological structures that have been used for inferring evolutionary relationships among taxa. However, parallel and convergent morphological traits can be affected by developmental and functional constraints. Here, we analyze molar shapes of platyrrhines in order to explore if platyrrhine molar diversity reflects homogeneous patterns of molar variation and covariation. We digitized 30 landmarks on mandibular first and second molars of 418 extant and 11 fossil platyrrhine specimens to determine the degree of integration of both molars when treated as a single module. We combined morphological and phylogenetic data to investigate the phylogenetic signal and to visualize the history of molar shape changes. All platyrrhine taxa show a common shape pattern suggesting that a relatively low degree of phenotypic variation is caused by convergent evolution, although molar shape carries significant phylogenetic signal. Atelidae and Pitheciidae show high levels of integration with low variation between the two molars, whereas the Cebinae/Saimiriinae, and especially Callitrichinae, show greater variation between molars and trend toward a modular organization. We hypothesize that biomechanical constraints of the masticatory apparatus, and the dietary profile of each taxon are the main factors that determine high covariation in molars. In contrast, low molar shape covariation may result from the fact that each molar exhibits a distinct ecological signal, as molars can be exposed to distinct occlusal loadings during food processing, suggesting that different selective pressures on molars can reduce overall molar integration.

Keywords: integration; modularity; molar morphology; phylogenetic signal.

PubMed Disclaimer

Publication types

LinkOut - more resources