Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988 Nov 11;62(15):10J-15J.
doi: 10.1016/0002-9149(88)90002-1.

Discovery, biochemistry and biology of lovastatin

Affiliations
Review

Discovery, biochemistry and biology of lovastatin

A W Alberts. Am J Cardiol. .

Abstract

Cholesterol is a 27-carbon steroid that is an essential component of the cell membrane, the immediate precursor of steroid hormones, the substrate for the formation of bile acids, and is required for the assembly of very low density lipoprotein in the liver. Because as much as two-thirds of total body cholesterol in patients is of endogenous origin, an effective means to control cholesterogenesis may occur by inhibition of its biosynthesis. Cholesterol is biosynthesized in a series of more than 25 separate enzymatic reactions that initially involve the formation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA). Early attempts to pharmacologically block cholesterol synthesis focused only on steps later in the biosynthetic pathway and resulted in compounds with unacceptable toxicity. Recent research had identified that HMG CoA reductase is a key rate-limiting enzyme in this pathway and is responsible for the conversion of HMG CoA to mevalonate. Additional research with fungal metabolites identified a series of compounds with potent inhibiting properties for this target enzyme, from which lovastatin was selected for clinical development. A reduction in cholesterol synthesis by lovastatin has been subsequently confirmed in cell culture, animal studies and in humans. A resultant decrease in circulating total and low-density lipoprotein (LDL) cholesterol has also been demonstrated in animals and humans. Because hepatic LDL receptors are the major mechanism of LDL clearance from the circulation, further animal research has confirmed that these declines in cholesterol are accompanied by an increase in hepatic LDL receptor activity. Lovastatin effectively diminishes endogenous cholesterol synthesis providing useful therapeutic properties for patients with hypercholesterolemia.

PubMed Disclaimer

LinkOut - more resources