Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;25(1):52-62.
doi: 10.3201/eid2501.180111.

Effects of Antibiotic Cycling Policy on Incidence of Healthcare-Associated MRSA and Clostridioides difficile Infection in Secondary Healthcare Settings

Effects of Antibiotic Cycling Policy on Incidence of Healthcare-Associated MRSA and Clostridioides difficile Infection in Secondary Healthcare Settings

Geraldine Mary Conlon-Bingham et al. Emerg Infect Dis. 2019 Jan.

Abstract

This quasi-experimental study investigated the effect of an antibiotic cycling policy based on time-series analysis of epidemiologic data, which identified antimicrobial drugs and time periods for restriction. Cyclical restrictions of amoxicillin/clavulanic acid, piperacillin/tazobactam, and clarithromycin were undertaken over a 2-year period in the intervention hospital. We used segmented regression analysis to compare the effect on the incidence of healthcare-associated Clostridioides difficile infection (HA-CDI), healthcare-associated methicillin-resistant Staphylococcus aureus (HA-MRSA), and new extended-spectrum β-lactamase (ESBL) isolates and on changes in resistance patterns of the HA-MRSA and ESBL organisms between the intervention and control hospitals. HA-CDI incidence did not change. HA-MRSA incidence increased significantly in the intervention hospital. The resistance of new ESBL isolates to amoxicillin/clavulanic acid and piperacillin/tazobactam decreased significantly in the intervention hospital; however, resistance to piperacillin/tazobactam increased after a return to the standard policy. The results question the value of antibiotic cycling to antibiotic stewardship.

Keywords: CDI; Clostridioides difficile; Clostridium difficile; ESBL; Ireland; MRSA; antibiotic cycling; antimicrobial drug resistance; bacteria; extended-spectrum β-lactamase; healthcare-acquired infections; methicillin-resistant Staphylococcus aureus; nosocomial infections.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Investigation of the effects of an antibiotic drug cycling policy on the incidence of HA-MRSA and HA-CDI in 2 hospitals, Northern Ireland, UK. ARIMA, autoregressive integrated moving average; HA-CDI, healthcare-associated Clostridioides difficile infection; HA-MRSA, healthcare-associated methicillin-resistant Staphylococcus aureus; FTE, full-time equivalent.
Figure 2
Figure 2
Antibiotic cycling schedule in Antrim Area Hospital, Northern Ireland, UK, showing the months where each antibiotic was recommended. Restrictions in the use of each antibiotic were in place during all other times. AMC, amoxicillin/clavulanic acid; TZP, piperacillin/tazobactam.
Figure 3
Figure 3
Trends in antibiotic use throughout preintervention (November 2011–September 2013), intervention (October 2013–September 2015), and postintervention (October 15–September 2016) periods in Antrim Area Hospital, Northern Ireland, UK. A) amoxicillin/clavulanic acid; B) piperacillin/tazobactam; C) macrolides; D) fluoroquinolones. Antibiotic is defined daily doses/100 bad days.
Figure 4
Figure 4
Incidence of healthcare-associated methicillin-resistant Staphylococcus aureus (A), healthcare-associated Clostridium difficile infection (B), and new extended-spectrum β-lactamase (C) cases throughout preintervention (November 2011–September 2013), intervention (October 2013–September 2015), and postintervention (October 15–September 2016) periods in Antrim Area Hospital and Causeway Hospital, Northern Ireland, UK. Black lines, Antrim Area Hospital; gray lines, Causeway Hospital. Incidence is number of cases per 100 occupied bed days.

References

    1. Specialist Advisory Committee on Antimicrobial Resistance (SACAR). Specialist Advisory Committee on Antimicrobial Resistance Antimicrobial Framework. J Antimicrob Chemother. 2007;60(Suppl1):i87–90. 10.1093/jac/dkm185 - DOI - PubMed
    1. Ashiru-Oredope D, Budd EL, Bhattacharya A, Din N, McNulty CA, Micallef C, et al. ; English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR). Implementation of antimicrobial stewardship interventions recommended by national toolkits in primary and secondary healthcare sectors in England: TARGET and Start Smart Then Focus. J Antimicrob Chemother. 2016;71:1408–14. 10.1093/jac/dkv492 - DOI - PubMed
    1. Ashiru-Oredope D, Hopkins S; English Surveillance Programme for Antimicrobial Utilization and Resistance Oversight Group. Antimicrobial stewardship: English Surveillance Programme for Antimicrobial Utilization and Resistance (ESPAUR). J Antimicrob Chemother. 2013;68:2421–3. 10.1093/jac/dkt363 - DOI - PubMed
    1. Aldeyab MA, Devine MJ, Flanagan P, Mannion M, Craig A, Scott MG, et al. Multihospital outbreak of Clostridium difficile ribotype 027 infection: epidemiology and analysis of control measures. Infect Control Hosp Epidemiol. 2011;32:210–9. 10.1086/658333 - DOI - PubMed
    1. Aldeyab MA, Scott MG, Kearney MP, Alahmadi YM, Magee FA, Conlon G, et al. Impact of an enhanced antibiotic stewardship on reducing methicillin-resistant Staphylococcus aureus in primary and secondary healthcare settings. Epidemiol Infect. 2014;142:494–500. 10.1017/S0950268813001374 - DOI - PMC - PubMed

Publication types

MeSH terms

Substances