Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Abstract

We compared extended-spectrum β-lactamase-producing Escherichia coli isolates from meat and fish, gut-colonized women, and infected patients in Cambodia. Nearly half of isolates from women were phylogenetically related to food-origin isolates; a subset had identical multilocus sequence types, extended-spectrum β-lactamase types, and antimicrobial resistance patterns. Eating sun-dried poultry may be an exposure route.

Keywords: Cambodia; ESBL; Escherichia coli; Southeast Asia; antibiotic resistance; antimicrobial resistance; bacteria; extended-spectrum β-lactamases; food safety; lower- and middle-income countries.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of 105 multilocus sequence types (MLSTs) among predominant extended-spectrum β-lactamase (ESBL) and carbapenemase gene types encoded by 196 ESBL-producing Escherichia coli from humans and food, Cambodia, 2015–2016. A) CTX-M-55; B) CTX-M15; C) CTX-M-27; D) CTX-M-14; E) carbapenemases. Vertical axes depict MLSTs. Horizontal axes depict the frequency of each observed MLST. CTX-M-3, CTX-M-24, and CTX-M-65 are not shown because these ESBL gene types were rare (<2%). One human colonization isolate (ST394, clan I/B2&D) encoded CTX-M-3, 1 food-origin isolate (ST10, clan II/A) encoded CTX-M-24, and 2 food-origin isolates (ST2207, clan II/A and ST7586, clan III/B1) encoded CTX-M-65.
Figure 2
Figure 2
Genomic comparisons of extended-spectrum β-lactamase (ESBL)–producing Escherichia coli from humans, fish, pork, and chicken from Cambodia and differences in human colonization isolates by phylogenetic clan. All isolates were phenotypically resistant to third-generation cephalosporins (data not shown). A) Whole-genome sequence-based phylogenetic tree of 195 ESBL-producing E. coli genomes comprising 87 human colonization isolates, 15 human clinical isolates, and 93 isolates from fish, pork, and chicken meat and resulting phylogenetic clans I/B2&D (n = 53), II/A (n = 69), and III/B1 (n = 47). B) ESBL-encoding genes of human colonization E. coli isolates, by phylogenetic clan. C) Phenotypic resistance of human colonization ESBL-producing E. coli isolates to antimicrobial drugs of 8 classes, by phylogenetic clan. Clinical isolates are not included in panels B or C. Of 87 human colonization genomes, 13 did not group into a phylogenetic clan and thus are excluded from panels B and C. Prevalence of outcome differed significantly (p<0.05, indicated by *) between 2 indicated clans by post hoc Tukey test. Only statistically significant differences are depicted. 1, quinolone; 2, co-trimoxazole; 3, tetracycline; 4, aminoglycoside; 5, macrolide; 6, amphenicol; 7, carbapenem; 8, colistin.

References

    1. Lazarus B, Paterson DL, Mollinger JL, Rogers BA. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review [cited 2017 Nov 3]. https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciu785 - DOI - PubMed
    1. Woerther P-L, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev. 2013;26:744–58. 10.1128/CMR.00023-13 - DOI - PMC - PubMed
    1. Laxminarayan R, Duse A, Wattal C, Zaidi AKL, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–98. 10.1016/S1473-3099(13)70318-9 - DOI - PubMed
    1. Om C, Daily F, Vlieghe E, McLaughlin JC, McLaws M-L. “If it’s a broad spectrum, it can shoot better”: inappropriate antibiotic prescribing in Cambodia. Antimicrob Resist Infect Control. 2016;5:58. 10.1186/s13756-016-0159-7 - DOI - PMC - PubMed
    1. Ström G, Boqvist S, Albihn A, Fernström L-L, Andersson Djurfeldt A, Sokerya S, et al. Antimicrobials in small-scale urban pig farming in a lower middle-income country–arbitrary use and high resistance levels [cited 2018 May 29]. https://aricjournal.biomedcentral.com/articles/10.1186/s13756-018-0328-y - DOI - PMC - PubMed

Publication types

MeSH terms

Substances