Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 18;19(1):947.
doi: 10.1186/s12864-018-5335-0.

Dichotomy in redundant enhancers points to presence of initiators of gene regulation

Affiliations

Dichotomy in redundant enhancers points to presence of initiators of gene regulation

Wei Song et al. BMC Genomics. .

Abstract

Background: The regulatory landscape of a gene locus often consists of several functionally redundant enhancers establishing phenotypic robustness and evolutionary stability of its regulatory program. However, it is unclear what mechanisms are employed by redundant enhancers to cooperatively orchestrate gene expression.

Results: By comparing redundant enhancers to single enhancers (enhancers present in a single copy in a gene locus), we observed that the DNA sequence encryption differs between these two classes of enhancers, suggesting a difference in their regulatory mechanisms. Initiator enhancers, which are a subset of redundant enhancers and show similar sequence encryption to single enhancers, differ from the rest of redundant enhancers in their sequence encryption, evolutionary conservation and proximity to target genes. Genes hosting initiator enhancers in their loci feature elevated levels of expression. Initiator enhancers show a high level of 3D chromatin contacts with both transcription start sites and regular enhancers, suggesting their roles as primary activators and intermediate catalysts of gene expression, through which the regulatory signals of redundant enhancers are propagated to the target genes. In addition, GWAS and eQTLs variants are significantly enriched in initiator enhancers compared to redundant enhancers, suggesting a key functional role these sequences play in gene regulation.

Conclusions: The specific characteristics and widespread abundance of initiator enhancers advocate for a possible universal hierarchical mechanism of tissue-specific gene regulation involving multiple redundant enhancers acting through initiator enhancers.

Keywords: Gene regulation; Redundant enhancers.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Enrichment of TFBSs in single enhancers compared to redundant enhancers, in (a) HepG2 and (b) GM12878 cell lines. Blue color shows TFBSs enriched in single enhancers, while red color shows TFBSs enriched in redundant enhancers. P-value was calculated using the Fisher’s exact test. Only TFBSs with the p-value < 0.05 and enrichment fold > 1.5 are shown
Fig. 2
Fig. 2
Classification accuracy for single enhancers vs randomly sampled human genomic sequences. a The receiver operating characteristic (ROC) and (b) the precision recall (PRC) curves for nine tissues
Fig. 3
Fig. 3
a Distribution of distances between enhancers and their nearest TSSs. b Distribution of phastCons conservation scores for different classes of enhancers. Single and initiator enhancers are more evolutionarily conserved than regular enhancers. The plot shows the analysis performed for the right ventricle (E105) tissue. Grey color means background value. (* - p-value < 0.01). P-value was calculated using the Wilcoxon rank-sum test
Fig. 4
Fig. 4
a Distribution of number of contacts between three classes of enhancers and TSSs/other enhancers with 1 Mb cutoff distance for interactions. b Distribution of number of contacts between enhancers and TSSs according to their distances to the nearest TSS (near half, distant half and total enhancers) with 1 Mb cutoff distance for interactions. The plot shows the analysis performed for the GM12878 (E116) cell line. (* - p-value < 1 × 10− 7). P-value was calculated using the Wilcoxon rank-sum test
Fig. 5
Fig. 5
Density of (a) GWAS and (b) eQTLs variants in three classes of enhancers for different tissues. (* - p-value < 0.05,** - p-value < 1 × 10− 4). P-value was calculated using the Binomial test

References

    1. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature. 2009;457:854–858. doi: 10.1038/nature07730. - DOI - PMC - PubMed
    1. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–461. doi: 10.1038/nature12787. - DOI - PMC - PubMed
    1. Osterwalder M, Barozzi I, Tissieres V, Fukuda-Yuzawa Y, Mannion BJ, Afzal SY, Lee EA, Zhu Y, Plajzer-Frick I, Pickle CS, et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature. 2018;554:239–243. doi: 10.1038/nature25461. - DOI - PMC - PubMed
    1. Hong JW, Hendrix DA, Levine MS. Shadow enhancers as a source of evolutionary novelty. Science. 2008;321:1314. doi: 10.1126/science.1160631. - DOI - PMC - PubMed
    1. Cannavo E, Khoueiry P, Garfield DA, Geeleher P, Zichner T, Gustafson EH, Ciglar L, Korbel JO, Furlong EE. Shadow enhancers are pervasive features of developmental regulatory networks. Curr Biol. 2016;26:38–51. doi: 10.1016/j.cub.2015.11.034. - DOI - PMC - PubMed

LinkOut - more resources