Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun;120(6):10370-10379.
doi: 10.1002/jcb.28321. Epub 2018 Dec 19.

microRNA-802 inhibits cell proliferation and induces apoptosis in human cervical cancer by targeting serine/arginine-rich splicing factor 9

Affiliations

microRNA-802 inhibits cell proliferation and induces apoptosis in human cervical cancer by targeting serine/arginine-rich splicing factor 9

Qianwen Zhang et al. J Cell Biochem. 2019 Jun.

Abstract

microRNAs (miRNAs) play crucial roles in cancer development and progression by targeting mRNAs for degradation and/or translational repression. microRNA-802 (miR-802) has been reported as a tumor suppressor and its deregulation is observed in various human cancers. However, the prognostic value of miR-802 and its underlying mechanisms involved in human cervical cancer are poorly investigated. The purposes of this study were to explore the role of miR-802 in cervical cancer and to clarify the regulation of serine/arginine-rich splicing factor 9 (SRSF9) by miR-802. Here, we found that miR-802 was downregulated in both cervical cancer tissues and cell lines. Transfection of a miR-802 mimic into cervical cancer cells inhibited their proliferation and colony formation, and promoted cell cycle arrest at the G0/G1 phase and cell apoptosis. In addition, we found that miR-802 could directly target the 3'-untranslated region of SRSF9 and suppress SRSF9 expression. Rescue experiments revealed that overexpression of SRSF9 partially reversed the inhibition effect of miR-802 in cervical cancer cells. Overall, these findings demonstrate that miR-802 functions as a tumor suppressor in cervical cancer by targeting SRSF9, suggesting that miR-802 might serve as a potential therapeutic target in cervical cancer.

Keywords: apoptosis; cervical cancer; microRNA-802; proliferation; serine/arginine-rich splicing factor 9.

PubMed Disclaimer

Similar articles

Cited by