Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec;72(6):1381-1390.
doi: 10.1161/HYPERTENSIONAHA.118.11706.

Exosomes From Women With Preeclampsia Induced Vascular Dysfunction by Delivering sFlt (Soluble Fms-Like Tyrosine Kinase)-1 and sEng (Soluble Endoglin) to Endothelial Cells

Affiliations

Exosomes From Women With Preeclampsia Induced Vascular Dysfunction by Delivering sFlt (Soluble Fms-Like Tyrosine Kinase)-1 and sEng (Soluble Endoglin) to Endothelial Cells

Xinwen Chang et al. Hypertension. 2018 Dec.

Abstract

Preeclampsia is a unique multiple system disorder that affects 5% to 8% of pregnancies. Exosomes, membrane-encapsulated vesicles that are released into the extracellular environment by many cell types, can carry signals to the recipient cells to affect inflammation, apoptosis, and angiogenesis. We hypothesize that exosomes from women with preeclampsia complications impair vascular development by delivering antiangiogenic factors to endothelial cells. In the current study, plasma samples from gestational age-matched preeclampsia and normal pregnancies were used to isolate circulating exosomes by commercial kits. Next, application of transwell and matrigel tube formation assays showed that exosomes from preeclampsia patients impaired angiogenesis of human umbilical vein endothelial cells. We found that exosomes from preeclampsia expressed abundant sFlt-1 (soluble fms-like tyrosine kinase-1) and sEng (soluble endoglin). Considering the possibility that extracellular sFlt and sEng were horizontally transferred to human umbilical vein endothelial cells, we successfully collected exosomes containing high levels of sFlt-1 and sEng by overexpressing them in human embryonic kidney 293 cells. Furthermore, we demonstrated that these exosomes can attenuate the proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. In a mouse model, exosomes from preeclampsia patients caused vascular dysfunction directly resulted in adverse preeclampsia-like birth outcomes. Thus, we proposed that exosomes mediated efficient transfer of sFlt-1 and sEng to endothelial cells to damage vascular functions and induce complications in preeclampsia patients.

Keywords: Flt1, soluble; endoglin, soluble; exosomes; preeclampsia; pregnancy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources