Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2019 Feb:64:228-236.
doi: 10.1016/j.jnutbio.2018.11.003. Epub 2018 Nov 26.

Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity

Affiliations
Randomized Controlled Trial

Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity

Shyamchand Mayengbam et al. J Nutr Biochem. 2019 Feb.

Abstract

Low dietary fiber intake is associated with higher rates of microbiota-associated chronic diseases such as obesity. Low-fiber diets alter not only microbial composition but also the availability of metabolic end products derived from fermentation of fiber. Our objective was to examine the effects of dietary fiber supplementation on gut microbiota and associated fecal and serum metabolites in relation to metabolic markers of obesity. We conducted a 12-week, single-center, double-blind, placebo-controlled trial with 53 adults with overweight or obesity. They were randomly assigned to a pea fiber (PF, 15 g/d in wafer form; n=29) or control (CO, isocaloric amount of wafers; n=24) group. Blood and fecal samples were collected at baseline and 12 weeks. Serum metabolomics, gut microbiota and fecal short-chain fatty acids (SCFAs) and bile acids (BAs) were examined. Within-group but not between-group analysis showed a significant effect of treatment on serum metabolites at 12 weeks compared to baseline. Fiber significantly altered fecal SCFAs and BAs with higher acetate and reduced isovalerate, cholate, deoxycholate and total BAs content in the PF group compared to baseline. Microbiota was differentially modulated in the two groups, including an increase in the SCFA producer Lachnospira in the PF group and decrease in the CO group. The change in body weight of participants showed a negative correlation with their change in Lachnospira (r=-0.463, P=.006) abundance. The current study provides insight into the actions of pea fiber and its impact on modulating microbiota-host-metabolic axes in obesity.

Keywords: Gut microbiota; Metabolomics; Obesity; Short-chain fatty acids; Yellow pea fiber.

PubMed Disclaimer

Publication types

LinkOut - more resources