Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 22;35(3):641-652.
doi: 10.1021/acs.langmuir.8b03634. Epub 2019 Jan 9.

Nonwetting/Prewetting/Wetting Transition of Ammonia on Graphite

Affiliations

Nonwetting/Prewetting/Wetting Transition of Ammonia on Graphite

Quang K Loi et al. Langmuir. .

Abstract

Simulations of ammonia adsorption on graphite were carried out over a range of temperatures to investigate the transition from nonwetting to wetting. The process is governed by a subtle interplay between the various interactions in the system and the temperature. At temperatures below the bulk triple point, the system is nonwetting; above the triple point, we observed continuous wetting, preceded by a prewetting region in which the so-called thin-to-thick film transition occurs. This system serves as an excellent example of wetting/nonwetting behavior in an associating fluid as a function of temperature because the heat of sublimation (or condensation) is greater than the isosteric heat of adsorption at zero loading. The nonwetting-to-wetting transition (NW/W) is also strongly affected by the adsorbate-adsorbate interaction, which becomes important when this contribution to the isosteric heat is of a similar magnitude to the heat of condensation. An appropriate indicator of a NW/W transition at a given loading is therefore the difference between the isosteric heat and the heat of sublimation (or condensation). Our simulation results show the "thin-to-thick" film transition in the temperature range between 195 and 240 K, which has not been previously explained. Above 240 K, continuous wetting occurs. This study provides a basis for a better understanding of adsorption in a range of systems because ammonia is an intermediate between simple molecules, such as argon, and strongly associating fluids, such as water.

PubMed Disclaimer

LinkOut - more resources