Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 25:557:66-73.
doi: 10.1016/j.ijpharm.2018.12.037. Epub 2018 Dec 21.

PEGylated doxorubicin cloaked nano-graphene oxide for dual-responsive photochemical therapy

Affiliations

PEGylated doxorubicin cloaked nano-graphene oxide for dual-responsive photochemical therapy

Li Wang et al. Int J Pharm. .

Abstract

Graphene oxide (GO) owns huge surface area and high drug loading capacity for aromatic molecules, such as doxorubicin (DOX). However, its biocompatibility is poor and it might agglomerate in physiological conditions. Chemical modification of GO with hydrophilicpolymer, especially PEGylation, was a common method to improve its biocompatibility. But the chemical modification of GO was complicated, and its drug loading capacity might be reduced because of the occupation of its functional groups. In this study, DOX-PEG polymers with different PEG molecular weights were synthesized to modify nano graphene oxide (NGO) to simultaneously realize the solubilization of NGO and the high loading capacity of DOX. The result showed that the drug release of NGO@DOX-PEG was pH sensitive. NIR irradiation could augment the drug release, cellular uptake, cytotoxicity and nuclear translocation of nanodrugs. Among the three kinds of nanodrugs, NGO@DOX-PEG5K was superior to others. It suggested that after conjugating with PEG, the bond between DOX-PEG and NGO was weakened, which resulted in a better drug release and treatment effect. In summary, the NIR and pH dual-responsive NGO@DOX-PEG nanodrugs were developed by noncovalent modification, and it demonstrated excellent biocompatibility and photochemical therapeutic effect, presenting a promising candidate for antitumor therapy, especially NGO@DOX-PEG5K.

Keywords: Doxorubicin; Nano-drug delivery system; Nano-graphene oxide; Photochemical therapy; pH sensitive.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources