Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Nov 15;37(22):4353-8.
doi: 10.1016/0006-2952(88)90617-x.

Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin

Affiliations

Inhibition of hepatic gluconeogenesis by metformin. Synergism with insulin

N Wollen et al. Biochem Pharmacol. .

Abstract

The antihyperglycemic agent, metformin (dimethylbiguanide), inhibits hepatic gluconeogenesis. To investigate the mechanism involved, glucose production from collagenase-isolated hepatocytes of starved rats was determined after 1 hr incubations with different substrates. In the absence of insulin, glucose production from 10(-2) M lactate-10(-3) M pyruvate, 10(-2)M M alanine, 10(-2) M glutamine and 5 x 10(-3) M glycerol was decreased (35-78%) by high concentrations (10(-2) and 10(-3) M) of metformin. Lower concentrations of metformin were not effective in the absence of insulin, but a therapeutic concentration (10(-5) M) of metformin acted synergistically with insulin (10(-8) M) to suppress gluconeogenesis from each of the substrates by an additional 10-14% compared with insulin (10(-8) M) alone. The synergistic antigluconeogenic effect of metformin (10(-5) M) with insulin (10(-8) M) was achieved without alteration of the contents of NADH and NAD+ in digitonin-separated cytosolic and mitochondrial-rich hepatocyte fractions. Mitochondrial ATP was also unaltered by the metformin (10(-5) M)-insulin (10(-8) M) combination. However, the antigluconeogenic effect of 10(-2) M metformin alone was associated with an increased (by 109%) mitochondrial NADH:NAD+ ratio. Thus reduced gluconeogenesis by high concentrations of metformin (e.g. 10(-2) M) may involve changes of redox state. However, therapeutic concentrations of metformin (e.g. 10(-5) M) potentiate the antigluconeogenic effect of insulin to a similar extent from a range of substrates, without altering energy status or redox state.

PubMed Disclaimer

LinkOut - more resources