Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 15:211:348-355.
doi: 10.1016/j.saa.2018.12.015. Epub 2018 Dec 11.

Aqueous dispersible green luminescent yttrium oxide:terbium microspheres with nanosilica shell coating

Affiliations

Aqueous dispersible green luminescent yttrium oxide:terbium microspheres with nanosilica shell coating

Anees A Ansari et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

Tb-doped Y2O3 microspheres (MSs) were prepared via a homogeneous thermal degradation process at a low temperature and then coated with a nanosilica shell (Y2O3:Tb@SiO2) using a sol-gel process. The core MSs were highly crystalline and spherical with a porous surface, single cubic phase, and particle size of 100-250 nm. Transmission electron microscopy (TEM) images clearly showed the spherical shape of the as-prepared core MSs, which were fully covered with a thick and mesoporous nanosilica shell. Fourier transform infrared (FTIR) spectra displayed the well-resolved infrared absorption peaks of silica (SiO, SiOSi, etc.), confirming the presence of the silica surface coating. The core MSs retained their spherical shape even after heat treatment and subsequent silica surface coating. It was observed that the core/shell MSs are easily dispersible in aqueous media and form a semi-transparent colloidal solution. Ultraviolet/visible and zeta potential studies were tested to prove the changes in the surface chemistry of the as-designed core/shell MSs and compare with their core counterpart. The growth of the amorphous silica shell not only increased the particle size but also enhanced remarkably the solubility and colloidal stability of the MSs in aqueous media. The strongest emission lines originating from the characteristic intra-shell 4f-4f electronic transitions of Tb ions were quenched after silica layer deposition, but the MSs still showed strong green (5D47F5 at 530-560 nm as most dominant) emission efficiency, which indicates great potential in fluorescent bio-probes. The emission intensity is discussed in relation to the quenching mechanism induced by surface silanol (Si-OH) groups, particle size, and surface charge.

Keywords: Microspheres; Photoluminescence; Surface chemistry; Y(2)O(3):Tb; Zeta potential.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources