Evolution in the light of fitness landscape theory
- PMID: 30583805
- DOI: 10.1016/j.tree.2018.10.009
Evolution in the light of fitness landscape theory
Abstract
By formalizing the relationship between genotype or phenotype and fitness, fitness landscapes harbor information on molecular and evolutionary constraints. The shape of the fitness landscape determines the potential for adaptation and speciation, as well as our ability to predict evolution. Consequently, fitness landscape theory has been invoked across the natural sciences and across multiple levels of biological organization. We review here the existing literature on fitness landscape theory by describing the main types of fitness landscape models, and highlight how these are increasingly integrated into an applicable statistical framework for the study of evolution. Specifically, we demonstrate how the interpretation of experimental studies with respect to fitness landscape models enables a direct link between evolution, molecular biology, and systems biology.
Keywords: Epistasis; Fitness landscapes; Genotype–phenotype map; Neutral evolution.
Copyright © 2018 Elsevier Ltd. All rights reserved.
Similar articles
-
Virus Evolution on Fitness Landscapes.Curr Top Microbiol Immunol. 2023;439:1-94. doi: 10.1007/978-3-031-15640-3_1. Curr Top Microbiol Immunol. 2023. PMID: 36592242
-
Modelling metabolic evolution on phenotypic fitness landscapes: a case study on C4 photosynthesis.Biochem Soc Trans. 2015 Dec;43(6):1172-6. doi: 10.1042/BST20150148. Biochem Soc Trans. 2015. PMID: 26614656 Review.
-
Evolution in alternating environments with tunable interlandscape correlations.Evolution. 2021 Jan;75(1):10-24. doi: 10.1111/evo.14121. Epub 2020 Dec 13. Evolution. 2021. PMID: 33206376 Free PMC article.
-
Adaptive Landscapes in the Age of Synthetic Biology.Mol Biol Evol. 2019 May 1;36(5):890-907. doi: 10.1093/molbev/msz004. Mol Biol Evol. 2019. PMID: 30657938 Free PMC article. Review.
-
Detecting epistasis from an ensemble of adapting populations.Evolution. 2015 Sep;69(9):2359-70. doi: 10.1111/evo.12735. Epub 2015 Aug 20. Evolution. 2015. PMID: 26194030 Free PMC article.
Cited by
-
Towards evolutionary predictions: Current promises and challenges.Evol Appl. 2022 Dec 9;16(1):3-21. doi: 10.1111/eva.13513. eCollection 2023 Jan. Evol Appl. 2022. PMID: 36699126 Free PMC article. Review.
-
Evolution of Plant Genome Size and Composition.Genomics Proteomics Bioinformatics. 2024 Dec 3;22(5):qzae078. doi: 10.1093/gpbjnl/qzae078. Genomics Proteomics Bioinformatics. 2024. PMID: 39499156 Free PMC article. Review.
-
Inference and visualization of complex genotype-phenotype maps with gpmap-tools.bioRxiv [Preprint]. 2025 Mar 15:2025.03.09.642267. doi: 10.1101/2025.03.09.642267. bioRxiv. 2025. PMID: 40161830 Free PMC article. Preprint.
-
Heterogeneity of the GFP fitness landscape and data-driven protein design.Elife. 2022 May 5;11:e75842. doi: 10.7554/eLife.75842. Elife. 2022. PMID: 35510622 Free PMC article.
-
Mutation bias interacts with composition bias to influence adaptive evolution.PLoS Comput Biol. 2020 Sep 28;16(9):e1008296. doi: 10.1371/journal.pcbi.1008296. eCollection 2020 Sep. PLoS Comput Biol. 2020. PMID: 32986712 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources