Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks
- PMID: 30584016
- PMCID: PMC6413333
- DOI: 10.1016/j.nicl.2018.101645
Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks
Abstract
We built and validated a deep learning algorithm predicting the individual diagnosis of Alzheimer's disease (AD) and mild cognitive impairment who will convert to AD (c-MCI) based on a single cross-sectional brain structural MRI scan. Convolutional neural networks (CNNs) were applied on 3D T1-weighted images from ADNI and subjects recruited at our Institute (407 healthy controls [HC], 418 AD, 280 c-MCI, 533 stable MCI [s-MCI]). CNN performance was tested in distinguishing AD, c-MCI and s-MCI. High levels of accuracy were achieved in all the classifications, with the highest rates achieved in the AD vs HC classification tests using both the ADNI dataset only (99%) and the combined ADNI + non-ADNI dataset (98%). CNNs discriminated c-MCI from s-MCI patients with an accuracy up to 75% and no difference between ADNI and non-ADNI images. CNNs provide a powerful tool for the automatic individual patient diagnosis along the AD continuum. Our method performed well without any prior feature engineering and regardless the variability of imaging protocols and scanners, demonstrating that it is exploitable by not-trained operators and likely to be generalizable to unseen patient data. CNNs may accelerate the adoption of structural MRI in routine practice to help assessment and management of patients.
Keywords: Alzheimer's disease; Convolutional neural networks; Deep learning; Diagnosis; Mild cognitive impairment; Prediction.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Figures



Similar articles
-
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14. Neuroimage. 2019. PMID: 30654174
-
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.Int J Neural Syst. 2020 Jun;30(6):2050032. doi: 10.1142/S012906572050032X. Int J Neural Syst. 2020. PMID: 32498641
-
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.Neuroimage Clin. 2019;23:101929. doi: 10.1016/j.nicl.2019.101929. Epub 2019 Jul 4. Neuroimage Clin. 2019. PMID: 31491832 Free PMC article.
-
Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment.Cochrane Database Syst Rev. 2020 Mar 2;3(3):CD009628. doi: 10.1002/14651858.CD009628.pub2. Cochrane Database Syst Rev. 2020. PMID: 32119112 Free PMC article.
-
Automatic Detection of Alzheimer's Disease using Deep Learning Models and Neuro-Imaging: Current Trends and Future Perspectives.Neuroinformatics. 2023 Apr;21(2):339-364. doi: 10.1007/s12021-023-09625-7. Epub 2023 Mar 8. Neuroinformatics. 2023. PMID: 36884142 Review.
Cited by
-
Pursuit of precision medicine: Systems biology approaches in Alzheimer's disease mouse models.Neurobiol Dis. 2021 Dec;161:105558. doi: 10.1016/j.nbd.2021.105558. Epub 2021 Nov 10. Neurobiol Dis. 2021. PMID: 34767943 Free PMC article. Review.
-
Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review.Diagnostics (Basel). 2024 Jun 17;14(12):1281. doi: 10.3390/diagnostics14121281. Diagnostics (Basel). 2024. PMID: 38928696 Free PMC article. Review.
-
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.Front Neurosci. 2025 Feb 14;19:1511350. doi: 10.3389/fnins.2025.1511350. eCollection 2025. Front Neurosci. 2025. PMID: 40027465 Free PMC article. Review.
-
Iranian Brain Imaging Database: A Neuropsychiatric Database of Healthy Brain.Basic Clin Neurosci. 2021 Jan-Feb;12(1):115-132. doi: 10.32598/bcn.12.1.1774.2. Epub 2021 Jan 1. Basic Clin Neurosci. 2021. PMID: 33995934 Free PMC article.
-
An Exploration: Alzheimer's Disease Classification Based on Convolutional Neural Network.Biomed Res Int. 2022 Jan 22;2022:8739960. doi: 10.1155/2022/8739960. eCollection 2022. Biomed Res Int. 2022. Retraction in: Biomed Res Int. 2023 Dec 29;2023:9787560. doi: 10.1155/2023/9787560. PMID: 35103240 Free PMC article. Retracted.
References
-
- Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., Gamst A., Holtzman D.M., Jagust W.J., Petersen R.C., Snyder P.J., Carrillo M.C., Thies B., Phelps C.H. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:270–279. - PMC - PubMed
-
- Ashburner J. A fast diffeomorphic image registration algorithm. NEUROIMAGE. 2007;38:95–113. - PubMed
-
- Bozzali M., Filippi M., Magnani G., Cercignani M., Franceschi M., Schiatti E., Castiglioni S., Mossini R., Falautano M., Scotti G., Comi G., Falini A. The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. NEUROLOGY. 2006;67:453–460. - PubMed
-
- Dubois B., Feldman H.H., Jacova C., Hampel H., Molinuevo J.L., Blennow K., DeKosky S.T., Gauthier S., Selkoe D., Bateman R., Cappa S., Crutch S., Engelborghs S., Frisoni G.B., Fox N.C., Galasko D., Habert M.O., Jicha G.A., Nordberg A., Pasquier F., Rabinovici G., Robert P., Rowe C., Salloway S., Sarazin M., Epelbaum S., de Souza L.C., Vellas B., Visser P.J., Schneider L., Stern Y., Scheltens P., Cummings J.L. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–629. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical