Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 10;123(1):277-288.
doi: 10.1021/acs.jpcb.8b09777. Epub 2018 Dec 27.

Molecular Dynamics Simulation of Surfactant Flooding Driven Oil-Detachment in Nano-Silica Channels

Affiliations

Molecular Dynamics Simulation of Surfactant Flooding Driven Oil-Detachment in Nano-Silica Channels

Xianqiong Tang et al. J Phys Chem B. .

Abstract

Recovery of crude oil in rock nanopores plays an important role in the petroleum industry. In this work, we carried out molecular dynamics (MD) simulations to study the process of ionic surfactant solution driven oil-detachment in model silica (SiO2) nanochannels. Our MD simulation results revealed that the oil-detachment induced by the ionic surfactant flooding can be described by a three-stage process including the formation and delivery of surfactant micelles, the surfactant micelle disintegration-spread and migration on the oil-aggregate surface, and oil molecular aggregate deformation-to-detachment. A flooding from rear (FFR) phenomenon is revealed that the surfactant molecules tend to migrate to the rear bottom of the oil molecular aggregate caused by the water flow effect and hydration of polar head groups of surfactants, which facilitate the penetration of water molecules into the oil-rock interface, and the oil molecule detachment occurs at the rear bottom of the oil molecular aggregate. The present MD simulation results also indicate that the dodecyl benzenesulfonate (SDBS) has higher oil-driven efficiency than that of dodecyl trimethylammonium bromide (DTAB). The difference of oil displacement efficiency between the two surfactants is attributed to the hydration property of the polar head groups. Compared with the -N(CH3)3+ headgroup in DTAB, the bare O atom in the -SO3- group has a stronger H bond interaction with the surrounding water molecules. The stronger interaction between the headgroup of SDBS and the adjacent water molecule results in the surfactant migrating to the rear bottom of the oil molecules more quickly, thus accelerating the detachment of oil molecules.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources