Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2019 Mar;32(3):267-277.
doi: 10.1111/jeb.13411. Epub 2019 Jan 24.

An evaluation of the methods to estimate effective population size from measures of linkage disequilibrium

Affiliations
Comparative Study

An evaluation of the methods to estimate effective population size from measures of linkage disequilibrium

Luis Alberto García-Cortés et al. J Evol Biol. 2019 Mar.

Abstract

In 1971, John Sved derived an approximate relationship between linkage disequilibrium (LD) and effective population size for an ideal finite population. This seminal work was extended by Sved and Feldman (Theor Pop Biol 4, 129, 1973) and Weir and Hill (Genetics 95, 477, 1980) who derived additional equations with the same purpose. These equations yield useful estimates of effective population size, as they require a single sample in time. As these estimates of effective population size are now commonly used on a variety of genomic data, from arrays of single nucleotide polymorphisms to whole genome data, some authors have investigated their bias through simulation studies and proposed corrections for different mating systems. However, the cause of the bias remains elusive. Here, we show the problems of using LD as a statistical measure and, analogously, the problems in estimating effective population size from such measure. For that purpose, we compare three commonly used approaches with a transition probability-based method that we develop here. It provides an exact computation of LD. We show here that the bias in the estimates of LD and effective population size are partly due to low-frequency markers, tightly linked markers or to a small total number of crossovers per generation. These biases, however, do not decrease when increasing sample size or using unlinked markers. Our results show the issues of such measures of effective population based on LD and suggest which of the method here studied should be used in empirical studies as well as the optimal distance between markers for such estimates.

Keywords: effective population size; linkage disequilibrium; recombination; transition probability matrix.

PubMed Disclaimer

Publication types

LinkOut - more resources