Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 31;16(12):e3000099.
doi: 10.1371/journal.pbio.3000099. eCollection 2018 Dec.

Enabling precision medicine via standard communication of HTS provenance, analysis, and results

Affiliations

Enabling precision medicine via standard communication of HTS provenance, analysis, and results

Gil Alterovitz et al. PLoS Biol. .

Abstract

A personalized approach based on a patient's or pathogen's unique genomic sequence is the foundation of precision medicine. Genomic findings must be robust and reproducible, and experimental data capture should adhere to findable, accessible, interoperable, and reusable (FAIR) guiding principles. Moreover, effective precision medicine requires standardized reporting that extends beyond wet-lab procedures to computational methods. The BioCompute framework (https://w3id.org/biocompute/1.3.0) enables standardized reporting of genomic sequence data provenance, including provenance domain, usability domain, execution domain, verification kit, and error domain. This framework facilitates communication and promotes interoperability. Bioinformatics computation instances that employ the BioCompute framework are easily relayed, repeated if needed, and compared by scientists, regulators, test developers, and clinicians. Easing the burden of performing the aforementioned tasks greatly extends the range of practical application. Large clinical trials, precision medicine, and regulatory submissions require a set of agreed upon standards that ensures efficient communication and documentation of genomic analyses. The BioCompute paradigm and the resulting BioCompute Objects (BCOs) offer that standard and are freely accessible as a GitHub organization (https://github.com/biocompute-objects) following the "Open-Stand.org principles for collaborative open standards development." With high-throughput sequencing (HTS) studies communicated using a BCO, regulatory agencies (e.g., Food and Drug Administration [FDA]), diagnostic test developers, researchers, and clinicians can expand collaboration to drive innovation in precision medicine, potentially decreasing the time and cost associated with next-generation sequencing workflow exchange, reporting, and regulatory reviews.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Schematic of BCO as a framework for advancing regulatory science by incorporating existing standards and introducing additional concepts that include digital signature, usability domain, validation kit, and error domain.
API, application programming interface; app, application; BCO, BioCompute Object; CGI, computer graphic imaging; FHIR, Fast Healthcare Interoperability Research; GA4GH, Global Alliance for Genomics and Health; HL7, Health Level 7; OS, operating system.
Fig 2
Fig 2. W3C PROV data model overview, used in Fast Healthcare Interoperability Research (FHIR) and research object (RO).
Adapted from http://www.w3.org/TR/prov-primer/.
Fig 3
Fig 3. Generic HTS platform schematic with proposed BCO integrations and extensions.
BCO, BioCompute Object; BD2K, Big Data to Knowledge; Desc., description; EMBL-EBI, European Molecular Biology Laboratory-European Bioinformatics Institute; Env., environmental; FDA, Food and Drug Administration; FHIR, Fast Healthcare Interoperability Research; GA4GH, Global Alliance for Genomics and Health; ID, identification; IO, input/output; NCBI, National Center for Biotechnology Information; NGS, Next-Generation Sequencing; Prereq., prerequisite; PROV, provenance specification; RO, research object; URI, uniform resource identifier; W3C, World Wide Web Consortium; Xref, external reference.

References

    1. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, et al. (2007) The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39: 1181–1186. 10.1038/ng1007-1181 - DOI - PMC - PubMed
    1. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, et al. (2014) ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42: D980–985. 10.1093/nar/gkt1113 - DOI - PMC - PubMed
    1. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, et al. (2017) LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33: 272–279. 10.1093/bioinformatics/btw613 - DOI - PMC - PubMed
    1. Sawyer E (2017) High Throughput Sequencing and Cost Trends. Nature Education.
    1. Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials; Board on Health Care Services; Board on Health Sciences Policy; Institute of Medicine; Micheel CM, Nass SJ, Omenn GS, editors. (2012). Evolution of Translational Omics: Lessons Learned and the Path Forward. Washington (DC). - PubMed

Publication types