Bayesian generalized biclustering analysis via adaptive structured shrinkage
- PMID: 30596887
- PMCID: PMC7307984
- DOI: 10.1093/biostatistics/kxy081
Bayesian generalized biclustering analysis via adaptive structured shrinkage
Abstract
Biclustering techniques can identify local patterns of a data matrix by clustering feature space and sample space at the same time. Various biclustering methods have been proposed and successfully applied to analysis of gene expression data. While existing biclustering methods have many desirable features, most of them are developed for continuous data and few of them can efficiently handle -omics data of various types, for example, binomial data as in single nucleotide polymorphism data or negative binomial data as in RNA-seq data. In addition, none of existing methods can utilize biological information such as those from functional genomics or proteomics. Recent work has shown that incorporating biological information can improve variable selection and prediction performance in analyses such as linear regression and multivariate analysis. In this article, we propose a novel Bayesian biclustering method that can handle multiple data types including Gaussian, Binomial, and Negative Binomial. In addition, our method uses a Bayesian adaptive structured shrinkage prior that enables feature selection guided by existing biological information. Our simulation studies and application to multi-omics datasets demonstrate robust and superior performance of the proposed method, compared to other existing biclustering methods.
Keywords: -omics data; Adaptive shrinkage prior; Bayesian; Biclustering; Biological information; Integrative analysis.
© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Similar articles
-
Robust knowledge-guided biclustering for multi-omics data.Brief Bioinform. 2023 Nov 22;25(1):bbad446. doi: 10.1093/bib/bbad446. Brief Bioinform. 2023. PMID: 38058188 Free PMC article.
-
Knowledge-Guided Biclustering via Sparse Variational EM Algorithm.10th IEEE Int Conf Big Knowl (2019). 2019 Nov;2019:25-32. doi: 10.1109/icbk.2019.00012. Epub 2019 Dec 30. 10th IEEE Int Conf Big Knowl (2019). 2019. PMID: 34290493 Free PMC article.
-
Bi-EB: Empirical Bayesian Biclustering for Multi-Omics Data Integration Pattern Identification among Species.Genes (Basel). 2022 Oct 30;13(11):1982. doi: 10.3390/genes13111982. Genes (Basel). 2022. PMID: 36360219 Free PMC article.
-
It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data.Brief Bioinform. 2019 Jul 19;20(4):1449-1464. doi: 10.1093/bib/bby014. Brief Bioinform. 2019. PMID: 29490019 Free PMC article. Review.
-
Multi-omic and multi-view clustering algorithms: review and cancer benchmark.Nucleic Acids Res. 2018 Nov 16;46(20):10546-10562. doi: 10.1093/nar/gky889. Nucleic Acids Res. 2018. PMID: 30295871 Free PMC article. Review.
Cited by
-
Robust integrative biclustering for multi-view data.Stat Methods Med Res. 2022 Nov;31(11):2201-2216. doi: 10.1177/09622802221122427. Epub 2022 Sep 13. Stat Methods Med Res. 2022. PMID: 36113157 Free PMC article.
-
A clustering approach to integrative analyses of multiomic cancer data.J Appl Stat. 2024 Nov 29;52(8):1539-1560. doi: 10.1080/02664763.2024.2431742. eCollection 2025. J Appl Stat. 2024. PMID: 40497161
-
Graph-guided Bayesian Factor Model for Integrative Analysis of Multi-modal Data with Noisy Network Information.Stat Biosci. 2024 Aug 11:10.1007/s12561-024-09452-7. doi: 10.1007/s12561-024-09452-7. Online ahead of print. Stat Biosci. 2024. PMID: 40693697 Free PMC article.
-
Robust knowledge-guided biclustering for multi-omics data.Brief Bioinform. 2023 Nov 22;25(1):bbad446. doi: 10.1093/bib/bbad446. Brief Bioinform. 2023. PMID: 38058188 Free PMC article.
-
GRIA: Graphical Regularization for Integrative Analysis.Proc SIAM Int Conf Data Min. 2020;2020:604-612. doi: 10.1137/1.9781611976236.68. Proc SIAM Int Conf Data Min. 2020. PMID: 32440369 Free PMC article.
References
-
- Ben-Dor A., Chor B., Karp R. and Yakhini Z. (2003). Discovering local structure in gene expression data: the order-preserving submatrix problem. Journal of Computational Biology 10, 373–384. - PubMed
-
- Bergmann S., Ihmels J. and Barkai N. (2003). Iterative signature algorithm for the analysis of large-scale gene expression data. Physical Review E 67, 031902. - PubMed
-
- Caldas J. and Kaski S. (2008). Bayesian biclustering with the plaid model. In: IEEE Workshop on Machine Learning for Signal Processing, 2008. MLSP 2008. Cancun, Mexico:IEEE, pp. 291–296.
-
- Callister S. J., Barry R. C., Adkins J. N., Johnson E. T., Qian W., Webb-Robertson B.-J. M., Smith R. D. and Lipton M. S. (2006). Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. Journal of Proteome Research 5, 277–286. - PMC - PubMed