Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988 Dec;255(6 Pt 2):H1269-75.
doi: 10.1152/ajpheart.1988.255.6.H1269.

Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury

Affiliations
Review

Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury

D N Granger. Am J Physiol. 1988 Dec.

Abstract

In this lecture, evidence is presented to support the following hypothesis regarding the roles of xanthine oxidase-derived oxidants and granulocytes in ischemia-reperfusion-induced microvascular injury. During the ischemic period, ATP is catabolized to yield hypoxanthine. The hypoxic stress also triggers the conversion of NAD-reducing xanthine dehydrogenase to the oxygen radical-producing xanthine oxidase. During reperfusion, molecular oxygen is reintroduced into the tissue where it reacts with hypoxanthine and xanthine oxidase to produce a burst of superoxide anion and hydrogen peroxide. In the presence of iron, superoxide anion and hydrogen peroxide react via the Haber-Weiss reaction to form hydroxyl radicals. This highly reactive and cytotoxic radical then initiates lipid peroxidation of cell membrane components and the subsequent release of substances that attract, activate, and promote the adherence of granulocytes to microvascular endothelium. The adherent granulocytes then cause further endothelial cell injury via the release of superoxide and various proteases.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources