Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988;63(2):239-48.
doi: 10.1016/0248-4900(88)90061-5.

Microtubule cytoskeleton and morphogenesis in the amoebae of the myxomycete Physarum polycephalum

Affiliations
Review

Microtubule cytoskeleton and morphogenesis in the amoebae of the myxomycete Physarum polycephalum

M Wright et al. Biol Cell. 1988.

Abstract

The amoebae of the myxomycete Physarum polycephalum are of interest in order to analyze the morphogenesis of the microtubule and microfilament cytoskeleton during cell cycle and flagellation. The amoebal interphase microtubule cytoskeleton consists of 2 distinct levels of organization, which correspond to different physiological roles. The first level is composed of the 2 kinetosomes or centrioles and their associated structures. The anterior kinetosomes forming the anterior and posterior flagella are morphologically distinguishable. Each centriole plays a role in the morphogenesis of its associated satellites and specific microtubule arrays. The 2 distinct centrioles correspond to the 2 successive maturation stages of the pro-centrioles which are built during prophase. The second level of organization consists of a prominent microtubule organizing center (mtoc 1) to which the anterior centriole is attached at least during interphase. The mtoc plays a role in the formation of the mitotic pole. These observations based on ultrastructural and physiological analyses of the amoebal cytoskeleton are now being extended to the biochemical level. The complex formed by the 2 centrioles and the mtoc 1 has been purified without modifying the microtubule-nucleating activity of the mtoc 1. Several microtubule-associated proteins have been characterized by their ability to bind taxol-stabilized microtubules. Their functions (e.g., microtubule assembly, protection of microtubules against dilution or cold treatment, phosphorylating and ATPase activities) are under investigation. These biochemical approaches could allow in vitro analysis of the morphogenesis of the amoebal microtubule cytoskeleton.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources