Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2019;16(2):91-101.
doi: 10.2174/1567205016666190103152425.

Impact of a Clinical Decision Support Tool on Dementia Diagnostics in Memory Clinics: The PredictND Validation Study

Affiliations
Multicenter Study

Impact of a Clinical Decision Support Tool on Dementia Diagnostics in Memory Clinics: The PredictND Validation Study

Marie Bruun et al. Curr Alzheimer Res. 2019.

Abstract

Background: Determining the underlying etiology of dementia can be challenging. Computer- based Clinical Decision Support Systems (CDSS) have the potential to provide an objective comparison of data and assist clinicians.

Objectives: To assess the diagnostic impact of a CDSS, the PredictND tool, for differential diagnosis of dementia in memory clinics.

Methods: In this prospective multicenter study, we recruited 779 patients with either subjective cognitive decline (n=252), mild cognitive impairment (n=219) or any type of dementia (n=274) and followed them for minimum 12 months. Based on all available patient baseline data (demographics, neuropsychological tests, cerebrospinal fluid biomarkers, and MRI visual and computed ratings), the PredictND tool provides a comprehensive overview and analysis of the data with a likelihood index for five diagnostic groups; Alzheimer´s disease, vascular dementia, dementia with Lewy bodies, frontotemporal dementia and subjective cognitive decline. At baseline, a clinician defined an etiological diagnosis and confidence in the diagnosis, first without and subsequently with the PredictND tool. The follow-up diagnosis was used as the reference diagnosis.

Results: In total, 747 patients completed the follow-up visits (53% female, 69±10 years). The etiological diagnosis changed in 13% of all cases when using the PredictND tool, but the diagnostic accuracy did not change significantly. Confidence in the diagnosis, measured by a visual analogue scale (VAS, 0-100%) increased (ΔVAS=3.0%, p<0.0001), especially in correctly changed diagnoses (ΔVAS=7.2%, p=0.0011).

Conclusion: Adding the PredictND tool to the diagnostic evaluation affected the diagnosis and increased clinicians' confidence in the diagnosis indicating that CDSSs could aid clinicians in the differential diagnosis of dementia.

Keywords: Alzheimer´s disease; CDSS; Computer-assisted diagnosis; Dementia with Lewy body; Frontotemporal disease; Vascular dementia; differential diagnosis; neurodegenerative disease..

PubMed Disclaimer

Similar articles

Cited by

  • cCOG: A web-based cognitive test tool for detecting neurodegenerative disorders.
    Rhodius-Meester HFM, Paajanen T, Koikkalainen J, Mahdiani S, Bruun M, Baroni M, Lemstra AW, Scheltens P, Herukka SK, Pikkarainen M, Hall A, Hänninen T, Ngandu T, Kivipelto M, van Gils M, Hasselbalch SG, Mecocci P, Remes A, Soininen H, van der Flier WM, Lötjönen J. Rhodius-Meester HFM, et al. Alzheimers Dement (Amst). 2020 Aug 25;12(1):e12083. doi: 10.1002/dad2.12083. eCollection 2020. Alzheimers Dement (Amst). 2020. PMID: 32864411 Free PMC article.
  • Development and design of a diagnostic report to support communication in dementia: Co-creation with patients and care partners.
    van Gils AM, Visser LNC, Hendriksen HMA, Georges J, van der Flier WM, Rhodius-Meester HFM. van Gils AM, et al. Alzheimers Dement (Amst). 2022 Sep 6;14(1):e12333. doi: 10.1002/dad2.12333. eCollection 2022. Alzheimers Dement (Amst). 2022. PMID: 36092691 Free PMC article.
  • Precision medicine in neurodegeneration: the IHI-PROMINENT project.
    Tate A, Suárez-Calvet M, Ekelund M, Eriksson S, Eriksdotter M, Van Der Flier WM, Georges J, Kivipelto M, Kramberger MG, Lindgren P, López JDG, Lötjönen J, Persson S, Pla S, Solomon A, Thurfjell L, Wimo A, Winblad B, Jönsson L; PROMINENT consortium. Tate A, et al. Front Neurol. 2023 Aug 2;14:1175922. doi: 10.3389/fneur.2023.1175922. eCollection 2023. Front Neurol. 2023. PMID: 37602259 Free PMC article.
  • Evaluating 2-[18F]FDG-PET in differential diagnosis of dementia using a data-driven decision model.
    Gjerum L, Frederiksen KS, Henriksen OM, Law I, Bruun M, Simonsen AH, Mecocci P, Baroni M, Dottorini ME, Koikkalainen J, Lötjönen J, Hasselbalch SG. Gjerum L, et al. Neuroimage Clin. 2020;27:102267. doi: 10.1016/j.nicl.2020.102267. Epub 2020 Apr 24. Neuroimage Clin. 2020. PMID: 32417727 Free PMC article.
  • Detecting frontotemporal dementia syndromes using MRI biomarkers.
    Bruun M, Koikkalainen J, Rhodius-Meester HFM, Baroni M, Gjerum L, van Gils M, Soininen H, Remes AM, Hartikainen P, Waldemar G, Mecocci P, Barkhof F, Pijnenburg Y, van der Flier WM, Hasselbalch SG, Lötjönen J, Frederiksen KS. Bruun M, et al. Neuroimage Clin. 2019;22:101711. doi: 10.1016/j.nicl.2019.101711. Epub 2019 Feb 4. Neuroimage Clin. 2019. PMID: 30743135 Free PMC article.

Publication types