Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch
- PMID: 30605518
- PMCID: PMC6451092
- DOI: 10.1093/nar/gky1311
Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch
Abstract
Investigations of most riboswitches remain confined to the ligand-binding aptamer domain. However, during the riboswitch mediated transcription regulation process, the aptamer domain and the expression platform compete for a shared strand. If the expression platform dominates, an anti-terminator helix is formed, and the transcription process is active (ON state). When the aptamer dominates, transcription is terminated (OFF state). Here, we use an expression platform switching experimental assay and structure-based electrostatic simulations to investigate this ON-OFF transition of the full length SAM-I riboswitch and its magnesium concentration dependence. Interestingly, we find the ratio of the OFF population to the ON population to vary non-monotonically as magnesium concentration increases. Upon addition of magnesium, the aptamer domain pre-organizes, populating the OFF state, but only up to an intermediate magnesium concentration level. Higher magnesium concentration preferentially stabilizes the anti-terminator helix, populating the ON state, relatively destabilizing the OFF state. Magnesium mediated aptamer-expression platform domain closure explains this relative destabilization of the OFF state at higher magnesium concentration. Our study reveals the functional potential of magnesium in controlling transcription of its downstream genes and underscores the importance of a narrow concentration regime near the physiological magnesium concentration ranges, striking a balance between the OFF and ON states in bacterial gene regulation.
Published by Oxford University Press on behalf of Nucleic Acids Research 2019.
Figures






Similar articles
-
Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.Nucleic Acids Res. 2022 Nov 28;50(21):12001-12018. doi: 10.1093/nar/gkac102. Nucleic Acids Res. 2022. PMID: 35348734 Free PMC article.
-
The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch.Nucleic Acids Res. 2013 Feb 1;41(3):1922-35. doi: 10.1093/nar/gks978. Epub 2012 Dec 20. Nucleic Acids Res. 2013. PMID: 23258703 Free PMC article.
-
Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.J Biol Chem. 2015 Feb 13;290(7):4464-75. doi: 10.1074/jbc.M114.613497. Epub 2014 Dec 30. J Biol Chem. 2015. PMID: 25550163 Free PMC article.
-
Riboswitch Mechanisms for Regulation of P1 Helix Stability.Int J Mol Sci. 2024 Oct 4;25(19):10682. doi: 10.3390/ijms251910682. Int J Mol Sci. 2024. PMID: 39409011 Free PMC article. Review.
-
Riboswitches: From living biosensors to novel targets of antibiotics.Gene. 2016 Nov 5;592(2):244-59. doi: 10.1016/j.gene.2016.07.035. Epub 2016 Jul 16. Gene. 2016. PMID: 27432066 Review.
Cited by
-
The RNA interactome in the Hallmarks of Cancer.Wiley Interdiscip Rev RNA. 2023 Sep-Oct;14(5):e1786. doi: 10.1002/wrna.1786. Epub 2023 Apr 12. Wiley Interdiscip Rev RNA. 2023. PMID: 37042179 Free PMC article. Review.
-
Mutations of N1 Riboswitch Affect its Dynamics and Recognition by Neomycin Through Conformational Selection.Front Mol Biosci. 2021 Feb 18;8:633130. doi: 10.3389/fmolb.2021.633130. eCollection 2021. Front Mol Biosci. 2021. PMID: 33708793 Free PMC article.
-
Structural prediction of RNA switches using conditional base-pair probabilities.PLoS One. 2019 Jun 12;14(6):e0217625. doi: 10.1371/journal.pone.0217625. eCollection 2019. PLoS One. 2019. PMID: 31188853 Free PMC article.
-
Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.Nucleic Acids Res. 2022 Nov 28;50(21):12001-12018. doi: 10.1093/nar/gkac102. Nucleic Acids Res. 2022. PMID: 35348734 Free PMC article.
-
Cryo-EM reveals remodeling of a tandem riboswitch at 2.9 Å resolution.Res Sq [Preprint]. 2025 May 2:rs.3.rs-6422592. doi: 10.21203/rs.3.rs-6422592/v1. Res Sq. 2025. PMID: 40343338 Free PMC article. Preprint.
References
-
- Grundy F.J., Henkin T.M.. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol. Microbiol. 1998; 30:737–749. - PubMed
-
- Montange R.K., Batey R.T.. Riboswitches: emerging themes in RNA structure and function. Annu. Rev. Biophys. 2008; 37:117–133. - PubMed
-
- Nahvi A., Sudarsan N., Ebert M.S., Zou X., Brown K.L., Breaker R.R.. Genetic control by a metabolite binding mRNA. Chem. Biol. 2002; 9:1043. - PubMed
-
- Batey R.T. Structures of regulatory elements in mRNAs. Curr. Opin. Struct. Biol. 2006; 16:299–306. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous