Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 3;19(1):3.
doi: 10.1186/s12889-018-6307-7.

The association between air pollution and preterm birth and low birth weight in Guangdong, China

Affiliations

The association between air pollution and preterm birth and low birth weight in Guangdong, China

Ying Liu et al. BMC Public Health. .

Abstract

Background: A mountain of evidence has shown that people's physical and mental health can be affected by various air pollutions. Poor pregnancy outcomes are associated with exposure to air pollution. Therefore, this study aims to investigate the association between air pollutions (PM2.5, PM10, SO2, NO2, CO, and O3) and preterm birth/low birth weight in Guangdong province, China.

Method: All maternal data and birth data from January 1, 2014 to December 31, 2015 were selected from a National Free Pre-pregnancy Check-ups system, and the daily air quality data of Guangdong Province was collected from China National Environmental Monitoring Center. 1784 women with either preterm birth information (n = 687) or low birth weight information (n = 1097) were used as experimental group. Control group included 1766 women with healthy birth information. Logistic regression models were employed to evaluate the effects of air pollutants on the risk of preterm birth and low birth weight.

Results: The pollution levels of PM2.5, PM10, SO2, NO2, CO, and O3 in Guangdong province were all lower than the national air pollution concentrations. The concentrations of PM2.5, PM10, SO2, NO2 and CO had obvious seasonal trends with the highest in winter and the lowest in summer. O3 concentrations in September (65.72 μg/m3) and October (84.18 μg/m3) were relatively higher. After controlling for the impact of confounding factors, the increases in the risk of preterm birth were associated with each 10 μg/m3 increase in PM2.5 (OR 1.043, 95% CI 1.01-1.09) and PM10 (OR 1.039, 95% CI 1.01~1.14) during the first trimester and in PM2.5 (OR 1.038, 95% CI 1.01~1.12), PM10 (OR 1.024, 95% CI 1.02~1.09), SO2 (OR 1.081, 95% CI 1.01~1.29), and O3 (OR 1.016, 95% CI 1.004~1.35) during the third trimester. The increase in the risk of low birth weight was associated with PM2.5, PM10, NO2, and O3 in the first month and the last month.

Conclusion: This study provides further evidence for the relationships between air pollutions and preterm birth/low birth weight. Pregnant women are recommended to reduce or avoid exposure to air pollutions during pregnancy, especially in the early and late stages of pregnancy.

Keywords: Air pollution; Low birth weight; Preterm birth.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

A written informed consent form was obtained from each participant before enrolment. The study was approved by Institutional Review Board of Chinese Association of National Research Institution for family planning.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Graphical illustration of the seasonal distribution of air pollution
Fig. 2
Fig. 2
Concentration-response relationships between air pollutants and preterm birth
Fig. 3
Fig. 3
Concentration-response relationships between air pollutants and low birth weight

Similar articles

Cited by

References

    1. Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, et al. Beyond PM2.5: the role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta. 2016;1860(12):2844–2855. doi: 10.1016/j.bbagen.2016.03.019. - DOI - PubMed
    1. Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003;60(8):612–616. doi: 10.1136/oem.60.8.612. - DOI - PMC - PubMed
    1. Cesaroni G, Badaloni C, Gariazzo C, Stafoggia M, Sozzi R, Davoli M, et al. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ Health Perspect. 2013;121:324. doi: 10.1289/ehp.1205862. - DOI - PMC - PubMed
    1. Jacobs M, Zhang G, Chen S, Mullins B, Bell M, Jin L, et al. The association between ambient air pollution and selected adverse pregnancy outcomes in China: a systematic review. Sci Total Environ. 2017;579:1179–1192. doi: 10.1016/j.scitotenv.2016.11.100. - DOI - PMC - PubMed
    1. Pereira G, Belanger K, Ebisu K, Bell ML. Fine particulate matter and risk of preterm birth in Connecticut in 2000–2006: a longitudinal study. Am J Epidemiol. 2013;kwt216. - PMC - PubMed