Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 3;15(1):2.
doi: 10.1186/s12917-018-1766-8.

A gD&gC-substituted pseudorabies virus vaccine strain provides complete clinical protection and is helpful to prevent virus shedding against challenge by a Chinese pseudorabies variant

Affiliations

A gD&gC-substituted pseudorabies virus vaccine strain provides complete clinical protection and is helpful to prevent virus shedding against challenge by a Chinese pseudorabies variant

Chuanjian Zhang et al. BMC Vet Res. .

Abstract

Background: Since 2011, pseudorabies caused by a variant PRV has re-emerged in many Chinese Bartha-K61-vaccinated pig farms. An efficacious vaccine is necessary to control this disease. We described the construction of a gD&gC-substituted pseudorabies virus (PRV B-gD&gCS) from the Bartha-K61 (as backbone) and AH02LA strain (as template for gD and gC genes) through bacterial artificial chromosome (BAC) technology using homologous recombination. The growth kinetics of PRV B-gD&gCS was compared with Bartha-K61. Its safety was evaluated in 28-day-old piglets. Protection efficacy was tested in piglets by lethal challenge with AH02LA at 7 days post vaccination, including body temperature, clinical symptoms, virus shedding, mortality rate, and lung lesions.

Results: The results showed that a BAC clone of Bartha-K61 and a B-gD&gCS clone were successfully generated. The growth kinetics of PRV B-gD&gCS strain on ST (Swine testicular) cells was similar to that of the Bartha-K61 strain. No piglets inoculated intramuscularly with PRV B-gD&gCS strain exhibited any clinical symptoms or virus shedding. After AH02LA challenge, all piglets in PRV B-gD&gCS and Bartha-K61 groups (n = 5 each) survived without exhibiting any clinical symptoms and high body temperature. More importantly, PRV B-gD&gCS strain completely prevented virus shedding in 2 piglets and reduced virus shedding post challenge in the other 3 piglets as compared with Bartha-K61 group.

Conclusions: Our results suggest that PRV B-gD&gCS strain is a promising vaccine candidate for the effective control of current severe epidemic pseudorabies in China.

Keywords: Bacterial artificial chromosome; Immunogenicity; Pseudorabies virus; Safety; gD&gC substitution.

PubMed Disclaimer

Conflict of interest statement

Ethics approval

This animal study was approved by the Institutional Animal Care and Use Committee at the Jiangsu Academy of Agriculture Sciences (authorization number SYXK (Su) 2015–0019) and Zhengzhuquan Pig Breeding Farm, and performed in strict accordance with the guidelines provided by the Institutional Biosafety Committee.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Construction of mini-F recombinant PRV Bartha strain (PRV B-mini-F), gD substituted clone (pB-gDS-mini-F) and gC&gD-substituted virus (PRV B-gD&gCS) (a) Mini-F was inserted in lieu of gC to generate the mini-F recombinant PRV Bartha-K61 strain for BAC through homologous recombination. b AH02LA gD-KAN was inserted in lieu of gD in the Bartha genome through the first recombination, the kanamycin gene was deleted in the second step, generating gD substituted clone (pB-gDS-mini-F). c Another recombination was performed to substitute the mini-F sequence with gC of AH02LA, generating gC&gD substituted virus (PRV B-gD&gCS)
Fig. 2
Fig. 2
Plaque of PRV B-mini-F, PRV B-gDS-mini-F and PRV B-gD&gCS, RFLP of pB-mini-F, pB-gDS-KAN-mini-F and pB-gDS-mini-F, and PCR verification of gC and gD genes replacement. A Images of PRV B-mini-F, PRV B-gDS-mini-F and PRV B-gD&gCS plaques under UV excitation and contrast are shown. B DNA from pB-mini-F BAC clone (lanes 1 and 4) and recombinant BACs of pB-gDS-KAN-mini-F (lanes 2 and 5) and pB-gDS-mini-F (lanes 3 and 6) were prepared by mini-prep and digested with Hind III (lanes 1–3) or Sph I (lanes 4–6). Digests were separated by 0.8% agarose gel electrophoresis for 15 h under 40 V. Predictions of these digestions were performed using whole genome sequences of Bartha-K61 as a reference (GenBank ID: JF797217.1). C Verification of gC and gD genes replacement by PCR. gD of Bartha-K61 and PRV B-gD&gCS were identified with AH02LA-gD-F/AH02LA-gD-R. gC of Bartha-K61 and PRV B-gD&gCS were identified with SEQ-AH02LA gC F/SEQ-AH02LA gC R
Fig. 3
Fig. 3
Multi-step growth curves of Bartha-K61 and PRV B-gD&gCS on STs. At 0, 6, 12, 24, 36, 48, 60 and 72 h post infection, virus was titrated on STs with a MOI of 0.01. Data were presented as mean ± SD, and analyzed using Student’s t test by SPSS 16.0 (SPSS Inc., Chicago, IL, USA)

References

    1. Jr FA, Camargos MF, de Oliveira AM, Ciaccizanella JR, Patrício MA, Braga AC, Cunha ES, D'Ambros R, Heinemann MB, Leite RC. Molecular epidemiology of Brazilian pseudorabies viral isolates. Vet Microbiol. 2010;141(3):238–245. - PubMed
    1. Lee JYS, Wilson MR. A review of pseudorabies (Aujeszky's disease) in pigs. Can Vet J. 1979;20(3):65–69. - PMC - PubMed
    1. Marcaccini A, López PM, Quiroga MI, Bermúdez R, Nieto JM, Alemañ N. Pseudorabies virus infection in mink: a host-specific pathogenesis. Vet Immunol Immunopathol. 2008;124(3):264–273. doi: 10.1016/j.vetimm.2008.03.013. - DOI - PubMed
    1. Sun Y, Luo Y, Wang CH, Yuan J, Li N, Song K, Qiu HJ. Control of swine pseudorabies in China: opportunities and limitations. Vet Microbiol. 2016;183:119–124. doi: 10.1016/j.vetmic.2015.12.008. - DOI - PubMed
    1. Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev. 2005;69(3):462–500. doi: 10.1128/MMBR.69.3.462-500.2005. - DOI - PMC - PubMed

LinkOut - more resources