Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Jan 3;8(1):4.
doi: 10.1186/s13643-018-0927-y.

Prevalence of metabolic syndrome among HIV-positive and HIV-negative populations in sub-Saharan Africa-a systematic review and meta-analysis

Affiliations
Meta-Analysis

Prevalence of metabolic syndrome among HIV-positive and HIV-negative populations in sub-Saharan Africa-a systematic review and meta-analysis

Olamide O Todowede et al. Syst Rev. .

Abstract

Background: Metabolic syndrome (MetS) is a constellation of conditions that increase the risk of cardiovascular diseases. It is an emerging concern in sub-Saharan African (SSA) countries, particularly because of an increasingly aging population and lifestyle changes. There is an increased risk of MetS and its components among people living with Human immune deficiency syndrome (HIV) individuals; however, the prevalence of metabolic syndrome in the SSA population and its differential contribution by HIV status is not yet established. This systematic review and meta-analysis were conducted to estimate the pooled prevalence of metabolic syndrome in people living with HIV and uninfected populations, its variation by sub-components.

Methods: We performed a comprehensive search on major databases-MEDLINE (PubMed), EBSCOhost, and Cochrane Database of Systematic Reviews and Web of sciences for original epidemiological research articles that compared proportions of the MetS and its subcomponents between people living with HIV and uninfected patients and published between January 1990-December 2017. The inclusion criteria were adults aged ≥ 18 years, with confirmed HIV status. We assessed the risk of bias using a prevalence studies tool, and random effect meta-analyses were used to compute the pooled overall prevalence.

Results: A total of four cross-sectional studies comprising 496 HIV uninfected and 731 infected participants were included in the meta-analysis. The overall prevalence of MetS among people living with HIV was 21.5% (95% CI 15.09-26.86) versus uninfected 12.0% (95% CI 5.00-21.00%), with substantial heterogeneity. The reported relative risk estimate for MetS among the two groups was twofold (RR 1.83, 95% CI 0.98-3.41), with an estimated predictive interval of 0.15 to 22.43 and P = 0.055 higher for the infected population. Hypertension was the most prevalent MetS sub-components, with diverse proportions of people living with HIV (5.2-50.0%) and uninfected (10.0-59.0%) populations.

Conclusions: The high range of MetS prevalence in the HIV-infected population compared to the uninfected population highlights the possible presence of HIV related drivers of MetS. Also, the reported high rate of MetS, irrespective of HIV status, indicates a major metabolic disorder epidemic that requires urgent prevention and management programs in SSA. Similarly, in the era of universal test and treat strategy among people living with HIV cohorts, routine check-up of MetS sub-components is required in HIV management as biomarkers.

Systematic review registration: PROSPERO CRD42016045727.

Keywords: HIV-negative; HIV-positive; Metabolic syndrome; Sub-Saharan Africa.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not Applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram of study selection process
Fig. 2
Fig. 2
Map of Africa indicating the regions where the included studies were situated
Fig. 3
Fig. 3
Forest plot of the prevalence of metabolic syndrome in studies on HIV-positive subjects
Fig. 4
Fig. 4
Forest plot of the prevalence ratios of metabolic syndrome comparing HIV-positive to HIV-negative subjects

Similar articles

Cited by

References

    1. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. doi: 10.1007/s11906-018-0812-z. - DOI - PMC - PubMed
    1. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin N Am. 2004;33(2):351–375. doi: 10.1016/j.ecl.2004.03.005. - DOI - PubMed
    1. Gundogan K, Bayram F, Gedik V, Kaya A, Karaman A, Demir O, Sabuncu T, Kocer D, Coskun R. Metabolic syndrome prevalence according to ATP III and IDF criteria and related factors in Turkish adults. Arch Med Sci. 2013;9(2):243–253. doi: 10.5114/aoms.2013.34560. - DOI - PMC - PubMed
    1. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015;313(19):1973–1974. doi: 10.1001/jama.2015.4260. - DOI - PubMed
    1. Xiao J, Wu C-L, Gao Y-X, Wang S-L, Wang L, Lu Q-Y, Wang X-J, Hua T-Q, Shen H, Cai H. Prevalence of metabolic syndrome and its risk factors among rural adults in Nantong, China. Sci Rep. 2016;6:38089. doi: 10.1038/srep38089. - DOI - PMC - PubMed

Publication types

MeSH terms