Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar:96:625-634.
doi: 10.1016/j.msec.2018.11.052. Epub 2018 Nov 27.

Photocrosslinked hydrogels from coumarin derivatives of hyaluronic acid for tissue engineering applications

Affiliations

Photocrosslinked hydrogels from coumarin derivatives of hyaluronic acid for tissue engineering applications

Riccardo Beninatto et al. Mater Sci Eng C Mater Biol Appl. 2019 Mar.

Abstract

Hydrogels are an increasingly attractive choice in the fields of regenerative medicine, wound care and tissue engineering as important forms of bio-scaffolds. For many clinical needs, injectable in situ crosslinkable hydrogels are strongly preferred, due to treatment effectiveness and ease of use. In this study, hyaluronic acid (HA), containing side-arms linked to photo-active coumarin moieties, was used for the preparation of wall-to-wall hydrogels. This photocrosslinkable HA, hereafter called HA-TEG-coumarin, produces colourless aqueous solutions that solidify upon near-UV irradiation (at a specific wavelength of 365 nm) via a clean [2 + 2] photocycloaddition reaction, without by-products formation. The crosslinking event, a robust and non-cytotoxic process, does not require catalysts or radical initiators: in the field of hyaluronan photocrosslinking, this innovative feature is significant to ensure the whole biocompatibility and to avoid collateral reactions. Mechanical and rheological tests showed that hyaluronan derivatives became hydrogels after 3-5 min of irradiation, with average values for bulk and surface elastic moduli of about 32 kPa and 193 kPa, respectively. Fluorescence recovery after photobleaching (FRAP) assay showed that the hydrogels are porous and allow a good permeation for nutrients and growth factors. Cell metabolism and proliferation assays revealed that hydrogel-encapsulated fibroblasts maintained their viability and that HA-TEG-coumarin sustained the proliferation of non-adherent myoblasts. For all of these reasons and thanks to a safe free-radical approach, this novel hyaluronan coumarin derivative could be a good candidate for tissue engineering and regenerative medicine applications.

Keywords: Coumarin; Hyaluronic acid; Hydrogel; Photocrosslinking; Scaffold; Tissue engineering.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources