Artificial Intelligence and Digital Pathology: Challenges and Opportunities
- PMID: 30607305
- PMCID: PMC6289004
- DOI: 10.4103/jpi.jpi_53_18
Artificial Intelligence and Digital Pathology: Challenges and Opportunities
Abstract
In light of the recent success of artificial intelligence (AI) in computer vision applications, many researchers and physicians expect that AI would be able to assist in many tasks in digital pathology. Although opportunities are both manifest and tangible, there are clearly many challenges that need to be overcome in order to exploit the AI potentials in computational pathology. In this paper, we strive to provide a realistic account of all challenges and opportunities of adopting AI algorithms in digital pathology from both engineering and pathology perspectives.
Keywords: Artificial intelligence; deep learning; digital pathology.
Conflict of interest statement
There are no conflicts of interest.
Figures
Similar articles
-
Application of Artificial Intelligence in Pathology: Trends and Challenges.Diagnostics (Basel). 2022 Nov 15;12(11):2794. doi: 10.3390/diagnostics12112794. Diagnostics (Basel). 2022. PMID: 36428854 Free PMC article. Review.
-
Digital Pathology and Artificial Intelligence Applications in Pathology.Brain Tumor Res Treat. 2022 Apr;10(2):76-82. doi: 10.14791/btrt.2021.0032. Brain Tumor Res Treat. 2022. PMID: 35545826 Free PMC article. Review.
-
Artificial Intelligence in pathology: current applications, limitations, and future directions.Ir J Med Sci. 2024 Apr;193(2):1117-1121. doi: 10.1007/s11845-023-03479-3. Epub 2023 Aug 5. Ir J Med Sci. 2024. PMID: 37542634 Review.
-
Artificial intelligence applied to breast pathology.Virchows Arch. 2022 Jan;480(1):191-209. doi: 10.1007/s00428-021-03213-3. Epub 2021 Nov 18. Virchows Arch. 2022. PMID: 34791536 Review.
-
Mini Review: The Last Mile-Opportunities and Challenges for Machine Learning in Digital Toxicologic Pathology.Toxicol Pathol. 2021 Jun;49(4):714-719. doi: 10.1177/0192623321990375. Epub 2021 Feb 16. Toxicol Pathol. 2021. PMID: 33590805 Review.
Cited by
-
Role of digital pathology in diagnostic histopathology in the response to COVID-19: results from a survey of experience in a UK tertiary referral hospital.J Clin Pathol. 2021 Feb;74(2):129-132. doi: 10.1136/jclinpath-2020-206786. Epub 2020 Jul 2. J Clin Pathol. 2021. PMID: 32616541 Free PMC article.
-
Use of digital pathology and artificial intelligence for the diagnosis of Helicobacter pylori in gastric biopsies.Pathologica. 2022 Aug;114(4):295-303. doi: 10.32074/1591-951X-751. Pathologica. 2022. PMID: 36136897 Free PMC article.
-
Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology.Nat Rev Clin Oncol. 2019 Nov;16(11):703-715. doi: 10.1038/s41571-019-0252-y. Epub 2019 Aug 9. Nat Rev Clin Oncol. 2019. PMID: 31399699 Free PMC article. Review.
-
Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications.Front Ophthalmol (Lausanne). 2023;2:1057896. doi: 10.3389/fopht.2022.1057896. Epub 2023 Jan 4. Front Ophthalmol (Lausanne). 2023. PMID: 36866233 Free PMC article.
-
iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images.Cancers (Basel). 2022 May 18;14(10):2489. doi: 10.3390/cancers14102489. Cancers (Basel). 2022. PMID: 35626093 Free PMC article.
References
-
- Pantanowitz L, Parwani AV. pathology. ASCP Press; 2017. p. 304. ISBN: 978-08189-6104.
-
- Sharma G, Carter A. Artificial intelligence and the pathologist: Future frenemies? Arch Pathol Lab Med. 2017;141:622–3. - PubMed
-
- Holzinger A, Malle B, Kieseberg P, Roth PM, Müller H, Reihs R, et al. Towards the augmented pathologist: Challenges of explainable-ai in digital pathology. arXiv Preprint arXiv: 1712.06657. 2017
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources