Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 13;19(2):1074-1082.
doi: 10.1021/acs.nanolett.8b04368. Epub 2019 Jan 14.

Room-Temperature Spin Hall Effect in Graphene/MoS2 van der Waals Heterostructures

Affiliations

Room-Temperature Spin Hall Effect in Graphene/MoS2 van der Waals Heterostructures

C K Safeer et al. Nano Lett. .

Abstract

Graphene is an excellent material for long-distance spin transport but allows little spin manipulation. Transition-metal dichalcogenides imprint their strong spin-orbit coupling into graphene via the proximity effect, and it has been predicted that efficient spin-to-charge conversion due to spin Hall and Rashba-Edelstein effects could be achieved. Here, by combining Hall probes with ferromagnetic electrodes, we unambiguously demonstrate experimentally the spin Hall effect in graphene induced by MoS2 proximity and for varying temperatures up to room temperature. The fact that spin transport and the spin Hall effect occur in different parts of the same material gives rise to a hitherto unreported efficiency for the spin-to-charge voltage output. Additionally, for a single graphene/MoS2 heterostructure-based device, we evidence a superimposed spin-to-charge current conversion that can be indistinguishably associated with either the proximity-induced Rashba-Edelstein effect in graphene or the spin Hall effect in MoS2. By a comparison of our results to theoretical calculations, the latter scenario is found to be the most plausible one. Our findings pave the way toward the combination of spin information transport and spin-to-charge conversion in two-dimensional materials, opening exciting opportunities in a variety of future spintronic applications.

Keywords: Graphene; Rashba−Edelstein effect; spin Hall effect; spin−orbit proximity; transition-metal dichalcogenides.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources