Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jan 3;11(1):38.
doi: 10.3390/cancers11010038.

Gut Microbiota and Cancer: From Pathogenesis to Therapy

Affiliations
Review

Gut Microbiota and Cancer: From Pathogenesis to Therapy

Silvia Vivarelli et al. Cancers (Basel). .

Abstract

Cancer is a multifactorial pathology and it represents the second leading cause of death worldwide. In the recent years, numerous studies highlighted the dual role of the gut microbiota in preserving host's health. Gut resident bacteria are able to produce a number of metabolites and bioproducts necessary to protect host's and gut's homeostasis. Conversely, several microbiota subpopulations may expand during pathological dysbiosis and therefore produce high levels of toxins capable, in turn, to trigger both inflammation and tumorigenesis. Importantly, gut microbiota can interact with the host either modulating directly the gut epithelium or the immune system. Numerous gut populating bacteria, called probiotics, have been identified as protective against the genesis of tumors. Given their capability of preserving gut homeostasis, probiotics are currently tested to help to fight dysbiosis in cancer patients subjected to chemotherapy and radiotherapy. Most recently, three independent studies show that specific gut resident species may potentiate the positive outcome of anti-cancer immunotherapy. The highly significant studies, uncovering the tight association between gut microbiota and tumorigenesis, as well as gut microbiota and anti-cancer therapy, are here described. The role of the Lactobacillus rhamnosus GG (LGG), as the most studied probiotic model in cancer, is also reported. Overall, according to the findings here summarized, novel strategies integrating probiotics, such as LGG, with conventional anti-cancer therapies are strongly encouraged.

Keywords: Lactobacillus rhamnosus GG; anti-cancer therapy; cancer; inflammasomes; integrated therapy; microbiome; microbiota; probiotics.

PubMed Disclaimer

Conflict of interest statement

M.L. is the PI of a research grant founded by Dicofarm Spa to his University Department. The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Anti-tumoral effects of the gut microbiota. Probiotics and other gut resident bacteria are able to secrete molecules, capable, in turn, to fight tumor growth and prevent tumorigenesis through several mechanisms. Schematic of the intestinal layers, from top to bottom: mucus and microbiota, gut epithelium. Into the grey boxes are illustrated, from top to bottom, the microorganism species implicated in the anti-cancer process, the molecules produced and the corresponding effects induced within the host. Abbreviations: MPL, monophosphoryl lipid A; LPS, lipopolysaccharide.
Figure 2
Figure 2
Pro-tumoral effects of the gut microbiota. Bacteria prominent during gut dysbiosis can secrete toxins able to interfere with host cell growth, finally predisposing the host organism to cancer development. Schematic of the intestinal layers, from top to bottom: mucus and microbiota, gut epithelium. Into the grey boxes are illustrated, from top to bottom, the microorganism species implicated in the pro-cancer process, the molecules produced and the corresponding effects induced within the host. Abbreviations: ROS, Reactive Oxygen Species; CTD, cytolethal distending toxin; IpgD, inositol phosphate phosphatase D; VirA, virulence gene A; CagA, cytotoxin associated gene A; FadA, Fusobacterium effector adhesin A; MP Toxin, metalloproteinase toxin; AvrA, avirulence protein A; β-gluc, β-glucuronidase.
Figure 3
Figure 3
Role of probiotics in anti-cancer therapy. Probiotics and Fecal Microbiome Transplantation (FMT) are currently studied as anti-cancer adjuvants to fight dysbiosis following anti-cancer therapy, to increase chemotherapy and immunotherapy efficacy and to both reduce tumor mass and prevent tumor recurrence.

References

    1. Fitzmaurice C., Allen C., Barber R.M., Barregard L., Bhutta Z.A., Brenner H., Dicker D.J., Chimed-Orchir O., Dandona R., Dandona L., et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017;3:524–548. doi: 10.1001/jamaoncol.2016.5688. - DOI - PMC - PubMed
    1. Collaborators G.M.a.C.o.D. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–1544. doi: 10.1016/S0140-6736(16)31012-1. - DOI - PMC - PubMed
    1. Tomasetti C., Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81. doi: 10.1126/science.1260825. - DOI - PMC - PubMed
    1. Ashford N.A., Bauman P., Brown H.S., Clapp R.W., Finkel A.M., Gee D., Hattis D.B., Martuzzi M., Sasco A.J., Sass J.B. Cancer risk: Role of environment. Science. 2015;347:727. doi: 10.1126/science.aaa6246. - DOI - PubMed
    1. Anand P., Kunnumakkara A.B., Kunnumakara A.B., Sundaram C., Harikumar K.B., Tharakan S.T., Lai O.S., Sung B., Aggarwal B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008;25:2097–2116. doi: 10.1007/s11095-008-9661-9. - DOI - PMC - PubMed

LinkOut - more resources