Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 4;18(1):1.
doi: 10.1186/s12934-018-1049-x.

Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis

Affiliations

Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis

Wenlong Ma et al. Microb Cell Fact. .

Abstract

Background: Glucosamine-6-phosphate N-acetyltransferase (GNA1) is the key enzyme that causes overproduction of N-acetylglucosamine in Bacillus subtilis. Previously, we increased GlcNAc production by promoting the expression of GNA1 from Caenorhabditis elegans (CeGNA1) in an engineered B. subtilis strain BSGN12. In this strain overflow metabolism to by-products acetoin and acetate had been blocked by mutations, however pyruvate accumulated as an overflow metabolite. Although overexpression of CeGNA1 drove carbon flux from pyruvate to the GlcNAc synthesis pathway and decreased pyruvate accumulation, the residual pyruvate reduced the intracellular pH, resulting in inhibited CeGNA1 activity and limited GlcNAc production.

Results: In this study, we attempted to further overcome pyruvate overflow by enzyme engineering and host engineering for enhanced GlcNAc production. To this end, the key enzyme CeGNA1 was evolved through error-prone PCR under pyruvate stress to enhance its catalytic activity. Then, the urease from Bacillus paralicheniformis was expressed intracellularly to neutralize the intracellular pH, making it more robust in growth and more efficient in GlcNAc production. It was found that the activity of mutant CeGNA1 increased by 11.5% at pH 6.5-7.5, with the catalytic efficiency increasing by 27.5% to 1.25 s-1 µM-1. Modulated expression of urease increased the intracellular pH from 6.0 to 6.8. The final engineered strain BSGN13 overcame pyruvate overflow, produced 25.6 g/L GlcNAc with a yield of 0.43 g GlcNAc/g glucose in a shake flask fermentation and produced 82.5 g/L GlcNAc with a yield of 0.39 g GlcNAc/g glucose by fed-batch fermentation, which was 1.7- and 1.2-times, respectively, of the yield achieved previously.

Conclusions: This study highlights a strategy that combines pathway enzyme engineering and host engineering to resolve overflow metabolism in B. subtilis for the overproduction of GlcNAc. By means of modulated expression of urease reduced pyruvate burden, conferred bacterial survival fitness, and enhanced GlcNAc production, all of which improved our understanding of co-regulation of cell growth and metabolism to construct more efficient B. subtilis cell factories.

Keywords: Bacillus subtilis; Glucosamine-6-phosphate N-acetyltransferase; N-Acetylglucosamine; Overflow; Pyruvate; Urease.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic overview of engineering Bacillus subtilis for GlcNAc production. EcGlmS: glucosamine-6-phosphate synthase from Escherichia coli; CeGNA1: glucosamine-6-phosphate N-acetyltransferase from Caenorhabditis elegans; Glc-6P: glucose-6-phosphate; Fru-6P: fructose-6-phosphate; GlcN-6P: glucosamine-6-phosphate; GlcNAc-6P: N-acetylglucosamine-6-phosphate; Glu: glutamate; Gln: glutamine
Fig. 2
Fig. 2
Effects of pyruvate stress and CeGNA1 mutation on GlcNAc fermentation. Comparison of extracellular pH (pHex) (a) and intracellular pH (pHin) (b) during fermentation of the control strain BSGN5 and the engineered BSGN12 transformed with the plasmid pP43-cMyc (M-Rm)-CeGNA1 or pP43-cMyc (M-Rm)-CeGNA1-Q155V/C158G, respectively. c Effects of CeGNA1 mutation on cell growth (dry cell weight, DCW), GlcNAc production, and pyruvate accumulation. d SDS-PAGE analysis of the purified wild type (1, CeGNA1) and mutant CeGNA1 (2, CeGNA1-Q155V/C158G). Effects of CeGNA1 mutation on the activity (e) and pH stability (f) of CeGNA1
Fig. 3
Fig. 3
Effects of urease expression on GlcNAc fermentation. a Expression of urease were controlled by the constitutive promoter Pveg and xylose inducible promoter PxylA, respectively. Effects of urease expression on urea utilization (b), pHex (c), cell growth (dry cell weight, DCW) (d) and GlcNAc production (e)
Fig. 4
Fig. 4
Effects of urease expression on GlcNAc fermentation. a Expression of urease were controlled by the exponential phage dependent promoters (PabrB and Phag) and middle-log phage dependent promoters (PabrB and Phag), respectively. Effects of urease expression on urea utilization (b), pH (c), cell growth (dry cell weight, DCW) (d) and GlcNAc production (e)
Fig. 5
Fig. 5
Time profile of fed-batch fermentation of BSGN13 in a 3-L fermenter. In the fed-batch fermentation, inoculation size, temperature, pH, agitation speed, and aeration rate were 5%, 37 °C, 7.3, 800 rpm, and 1.5 vvm, respectively. With the initial concentration being 40 g/L, glucose concentration was maintained at 3–10 g/L using the automatic glucose analyzer during the fermentation. DCW: dry cell weight

Similar articles

Cited by

References

    1. Liu YF, Zhu YQ, Ma WL, Shin HD, Li JH, Liu L, Du GC, Chen J. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng. 2014;24:61–69. doi: 10.1016/j.ymben.2014.04.004. - DOI - PubMed
    1. Longo DL, Moustaghfir FZ, Zerbo A, Consolino L, Anemone A, Bracesco M, Aime S. EXCI-CEST: exploiting pharmaceutical excipients as MRI-CEST contrast agents for tumor imaging. Int J Pharm. 2017;525:275–281. doi: 10.1016/j.ijpharm.2017.04.040. - DOI - PubMed
    1. Ud-Din A, Tikhomirova A, Roujeinikova A. Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT) Int J Mol Sci. 2016;17:45. - PMC - PubMed
    1. Dorfmueller HC, Fang W, Rao FV, Blair DE, Attrill H, van Aalten DM. Structural and biochemical characterization of a trapped coenzyme A adduct of Caenorhabditis elegans glucosamine-6-phosphate N-acetyltransferase 1. Acta Crystallogr D Biol Crystallogr. 2012;68:1019–1029. doi: 10.1107/S0907444912019592. - DOI - PMC - PubMed
    1. Ma W, Liu Y, Shin H, Li J, Chen J, Du G, Liu L. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. Bioresour Technol. 2018;250:642–649. doi: 10.1016/j.biortech.2017.10.007. - DOI - PubMed

MeSH terms

LinkOut - more resources