Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019:1917:183-201.
doi: 10.1007/978-1-4939-8991-1_14.

Genome Editing in Potato with CRISPR/Cas9

Affiliations

Genome Editing in Potato with CRISPR/Cas9

Satya Swathi Nadakuduti et al. Methods Mol Biol. 2019.

Abstract

Cultivated potato, Solanum tuberosum Group Tuberosum L. (2n = 4x = 48) is a heterozygous tetraploid crop that is clonally propagated, thereby resulting in identical genotypes. Due to the lack of sexual reproduction and its concomitant segregation of alleles, genetic engineering is an efficient way of introducing crop improvement traits in potato. In recent years, genome-editing via the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system for targeted genome modifications has emerged as the most powerful method due to the ease in designing and construction of gene-specific single guide RNA (sgRNA) vectors. These sgRNA vectors are easily reprogrammable to direct Streptococcus pyogenes Cas9 (SpCas9) to generate double stranded breaks (DSBs) in the target genomes that are then repaired by the cell via the error-prone non-homologous end-joining (NHEJ) pathway or by precise homologous recombination (HR) pathway. CRISPR/Cas9 technology has been successfully implemented in potato for targeted mutagenesis to generate knockout mutations (by means of NHEJ) as well as gene targeting to edit an endogenous gene (by HR). In this chapter, we describe procedures for designing sgRNAs, protocols to clone sgRNAs for CRISPR/Cas9 constructs to generate knockouts, design of donor repair templates and use geminivirus replicons (GVRs) to facilitate gene-editing by HR in potato. We also describe tissue culture procedures in potato for Agrobacterium-mediated transformation to generate gene-edited events along with their molecular characterization.

Keywords: Agrobacterium-mediated transformation; CRISPR/Cas9; Plant genome-editing; Potato; Single guide RNA; Targeted mutagenesis; Tissue culture.

PubMed Disclaimer

References

    1. Pham GM, Newton L, Wiegert-Rininger K, Vaillancourt B, Douches DS, Buell CR (2017) Extensive genome heterogeneity leads to preferential allele expression and copy number-dependent expression in cultivated potato. Plant J 92:624–637. https://doi.org/10.1111/tpj.13706 - DOI - PubMed
    1. Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B, Wiegert-Rininger K, Wood JC, Douches DS, Farré EM, Veilleux RE, Buell CR (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci 114:E9999. https://doi.org/10.1073/pnas.1714380114 - DOI - PubMed - PMC
    1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829 - DOI - PubMed - PMC
    1. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476. https://doi.org/10.1007/s00299-015-1816-7 - DOI - PubMed
    1. Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10:1–12. https://doi.org/10.1371/journal.pone.0144591 - DOI

Publication types

MeSH terms

Substances

LinkOut - more resources