Parallelized Natural Extension Reference Frame: Parallelized Conversion from Internal to Cartesian Coordinates
- PMID: 30614534
- DOI: 10.1002/jcc.25772
Parallelized Natural Extension Reference Frame: Parallelized Conversion from Internal to Cartesian Coordinates
Abstract
The conversion of polymer parameterization from internal coordinates (bond lengths, angles, and torsions) to Cartesian coordinates is a fundamental task in molecular modeling, often performed using the natural extension reference frame (NeRF) algorithm. NeRF can be parallelized to process multiple polymers simultaneously, but is not parallelizable along the length of a single polymer. A mathematically equivalent algorithm, pNeRF, has been derived that is parallelizable along a polymer's length. Empirical analysis demonstrates an order-of-magnitude speed up using modern GPUs and CPUs. In machine learning-based workflows, in which partial derivatives are backpropagated through NeRF equations and neural network primitives, switching to pNeRF can reduce the fractional computational cost of coordinate conversion from over two-thirds to around 10%. An optimized TensorFlow-based implementation of pNeRF is available on GitHub at https://github.com/aqlaboratory/pnerf © 2018 Wiley Periodicals, Inc.
Keywords: internal coordinates; machine learning; molecular dynamics; molecular mechanics; protein structure.
© 2019 Wiley Periodicals, Inc.
Similar articles
-
MP-NeRF: A massively parallel method for accelerating protein structure reconstruction from internal coordinates.J Comput Chem. 2022 Jan 5;43(1):74-78. doi: 10.1002/jcc.26768. Epub 2021 Oct 28. J Comput Chem. 2022. PMID: 34709663
-
Practical conversion from torsion space to Cartesian space for in silico protein synthesis.J Comput Chem. 2005 Jul 30;26(10):1063-8. doi: 10.1002/jcc.20237. J Comput Chem. 2005. PMID: 15898109
-
Learning Correlations between Internal Coordinates to Improve 3D Cartesian Coordinates for Proteins.J Chem Theory Comput. 2023 Jul 25;19(14):4689-4700. doi: 10.1021/acs.jctc.2c01270. Epub 2023 Feb 7. J Chem Theory Comput. 2023. PMID: 36749957 Free PMC article.
-
High-performance transformation of protein structure representation from internal to Cartesian coordinates.J Comput Chem. 2020 Sep 15;41(24):2104-2114. doi: 10.1002/jcc.26372. Epub 2020 Jul 20. J Comput Chem. 2020. PMID: 32686852
-
Revealing Drug-Target Interactions with Computational Models and Algorithms.Molecules. 2019 May 2;24(9):1714. doi: 10.3390/molecules24091714. Molecules. 2019. PMID: 31052598 Free PMC article. Review.
Cited by
-
Learning to evolve structural ensembles of unfolded and disordered proteins using experimental solution data.J Chem Phys. 2023 May 7;158(17):174113. doi: 10.1063/5.0141474. J Chem Phys. 2023. PMID: 37144719 Free PMC article.
-
Protein Structure Refinement Using Multi-Objective Particle Swarm Optimization with Decomposition Strategy.Int J Mol Sci. 2021 Apr 23;22(9):4408. doi: 10.3390/ijms22094408. Int J Mol Sci. 2021. PMID: 33922489 Free PMC article.
-
End-to-End Differentiable Learning of Protein Structure.Cell Syst. 2019 Apr 24;8(4):292-301.e3. doi: 10.1016/j.cels.2019.03.006. Epub 2019 Apr 17. Cell Syst. 2019. PMID: 31005579 Free PMC article.
-
Differentiable rotamer sampling with molecular force fields.Brief Bioinform. 2023 Nov 22;25(1):bbad456. doi: 10.1093/bib/bbad456. Brief Bioinform. 2023. PMID: 38095857 Free PMC article.
-
Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks.Biophys J. 2024 Sep 3;123(17):2671-2681. doi: 10.1016/j.bpj.2023.10.011. Epub 2023 Oct 14. Biophys J. 2024. PMID: 37838833
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources