Metabolism of cyanogenic glycosides: A review
- PMID: 30615957
- DOI: 10.1016/j.fct.2019.01.002
Metabolism of cyanogenic glycosides: A review
Abstract
Potential toxicity of cyanogenic glycosides arises from enzymatic degradation to produce hydrogen cyanide. Information on the metabolism of cyanogenic glycosides is available from in vitro, animal and human studies. In the absence of β-glucosidase enzymes from the source plant material, two processes appear to contribute to the production of cyanide from cyanogenic glycosides; the proportion of the glycoside dose that reaches the large intestine, where most of the bacterial hydrolysis occurs, and the rate of hydrolysis of cyanogenic glycosides to cyanohydrin and cyanide. Some cyanogenic glycosides, such as prunasin, are actively absorbed in the jejunum by utilising the epithelial sodium-dependent monosaccharide transporter (SGLT1). The rate of cyanide production from cyanogenic glycosides due to bacterial β-glycosidase activity depends on; the sugar moiety in the molecule and the stability of the intermediate cyanohydrin following hydrolysis by bacterial β-glucosidase. Cyanogenic glycosides with a gentiobiose sugar, amygdalin, linustatin, and neolinustatin, undergo a two stage hydrolysis, with gentiobiose initially being hydrolysed to glucose to form prunasin, linamarin and lotaustralin, respectively. While the overall impact of these metabolic factors is difficult to predict, the toxicity of cyanogenic glycosides will be less than the toxicity suggested by their theoretical hydrocyanic acid equivalents.
Keywords: Amygdalin; Cyanogenic glycoside; Linamarin; Metabolism; Prunasin.
Copyright © 2019 Elsevier Ltd. All rights reserved.
Similar articles
-
Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms.Int J Food Microbiol. 1999 Dec 15;53(2-3):169-84. doi: 10.1016/s0168-1605(99)00156-7. Int J Food Microbiol. 1999. PMID: 10634708
-
Comparative metabolism of linamarin and amygdalin in hamsters.Food Chem Toxicol. 1986 May;24(5):417-20. doi: 10.1016/0278-6915(86)90206-1. Food Chem Toxicol. 1986. PMID: 3744195
-
Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.Phytochem Anal. 2014 Mar-Apr;25(2):122-6. doi: 10.1002/pca.2476. Epub 2013 Sep 23. Phytochem Anal. 2014. PMID: 24115144
-
Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds.Molecules. 2021 Apr 13;26(8):2253. doi: 10.3390/molecules26082253. Molecules. 2021. PMID: 33924691 Free PMC article. Review.
-
Localization and catabolism of cyanogenic glycosides.Ciba Found Symp. 1988;140:67-91. doi: 10.1002/9780470513712.ch6. Ciba Found Symp. 1988. PMID: 3073063 Review.
Cited by
-
The gut microbiome in konzo.Nat Commun. 2021 Sep 10;12(1):5371. doi: 10.1038/s41467-021-25694-1. Nat Commun. 2021. PMID: 34508085 Free PMC article.
-
Co-opted genes of algal origin protect C. elegans against cyanogenic toxins.Curr Biol. 2022 Nov 21;32(22):4941-4948.e3. doi: 10.1016/j.cub.2022.09.041. Epub 2022 Oct 11. Curr Biol. 2022. PMID: 36223775 Free PMC article.
-
Cyanide and Cyanogenic Compounds-Toxicity, Molecular Targets, and Therapeutic Agents.Biomolecules. 2024 Nov 7;14(11):1420. doi: 10.3390/biom14111420. Biomolecules. 2024. PMID: 39595596 Free PMC article. Review.
-
Characterization of yellow root cassava and food products: investigation of cyanide and β-carotene concentrations.BMC Res Notes. 2020 Jul 11;13(1):333. doi: 10.1186/s13104-020-05175-2. BMC Res Notes. 2020. PMID: 32653027 Free PMC article.
-
A Novel UHPLC-MS/MS Based Method for Isomeric Separation and Quantitative Determination of Cyanogenic Glycosides in American Elderberry.Metabolites. 2024 Jun 26;14(7):360. doi: 10.3390/metabo14070360. Metabolites. 2024. PMID: 39057683 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical