Near-continuously synthesized leading strands in Escherichia coli are broken by ribonucleotide excision
- PMID: 30617079
- PMCID: PMC6347710
- DOI: 10.1073/pnas.1814512116
Near-continuously synthesized leading strands in Escherichia coli are broken by ribonucleotide excision
Abstract
In vitro, purified replisomes drive model replication forks to synthesize continuous leading strands, even without ligase, supporting the semidiscontinuous model of DNA replication. However, nascent replication intermediates isolated from ligase-deficient Escherichia coli comprise only short (on average 1.2-kb) Okazaki fragments. It was long suspected that cells replicate their chromosomal DNA by the semidiscontinuous mode observed in vitro but that, in vivo, the nascent leading strand was artifactually fragmented postsynthesis by excision repair. Here, using high-resolution separation of pulse-labeled replication intermediates coupled with strand-specific hybridization, we show that excision-proficient E. coli generates leading-strand intermediates >10-fold longer than lagging-strand Okazaki fragments. Inactivation of DNA-repair activities, including ribonucleotide excision, further increased nascent leading-strand size to ∼80 kb, while lagging-strand Okazaki fragments remained unaffected. We conclude that in vivo, repriming occurs ∼70× less frequently on the leading versus lagging strands, and that DNA replication in E. coli is effectively semidiscontinuous.
Keywords: Okazaki fragments; ligase mutant; replication intermediates; ribonucleotide excision repair; the leading strand.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Comment in
-
Solution to the 50-year-old Okazaki-fragment problem.Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3358-3360. doi: 10.1073/pnas.1900372116. Epub 2019 Feb 15. Proc Natl Acad Sci U S A. 2019. PMID: 30770440 Free PMC article. No abstract available.
Similar articles
-
Low-molecular-weight DNA replication intermediates in Escherichia coli: mechanism of formation and strand specificity.J Mol Biol. 2013 Nov 15;425(22):4177-91. doi: 10.1016/j.jmb.2013.07.021. Epub 2013 Jul 20. J Mol Biol. 2013. PMID: 23876705 Free PMC article.
-
The replication intermediates in Escherichia coli are not the product of DNA processing or uracil excision.J Biol Chem. 2006 Aug 11;281(32):22635-46. doi: 10.1074/jbc.M602320200. Epub 2006 Jun 12. J Biol Chem. 2006. PMID: 16772291
-
Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size.J Biol Chem. 1992 Feb 25;267(6):4030-44. J Biol Chem. 1992. PMID: 1740451
-
Days weaving the lagging strand synthesis of DNA - A personal recollection of the discovery of Okazaki fragments and studies on discontinuous replication mechanism.Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(5):322-338. doi: 10.2183/pjab.93.020. Proc Jpn Acad Ser B Phys Biol Sci. 2017. PMID: 28496054 Free PMC article. Review.
-
Unraveling the complexity of asymmetric DNA replication: Advancements in ribonucleotide mapping techniques and beyond.Genomics. 2024 Sep;116(5):110908. doi: 10.1016/j.ygeno.2024.110908. Epub 2024 Aug 5. Genomics. 2024. PMID: 39106913 Review.
Cited by
-
Generation and Repair of Postreplication Gaps in Escherichia coli.Microbiol Mol Biol Rev. 2023 Jun 28;87(2):e0007822. doi: 10.1128/mmbr.00078-22. Epub 2023 May 22. Microbiol Mol Biol Rev. 2023. PMID: 37212693 Free PMC article. Review.
-
A Comprehensive View of Translesion Synthesis in Escherichia coli.Microbiol Mol Biol Rev. 2020 Jun 17;84(3):e00002-20. doi: 10.1128/MMBR.00002-20. Print 2020 Aug 19. Microbiol Mol Biol Rev. 2020. PMID: 32554755 Free PMC article. Review.
-
Dynamics of Proteins and Macromolecular Machines in Escherichia coli.EcoSal Plus. 2021 Dec 15;9(2):eESP00112020. doi: 10.1128/ecosalplus.ESP-0011-2020. Epub 2021 Jun 1. EcoSal Plus. 2021. PMID: 34060908 Free PMC article. Review.
-
S-phase checkpoint prevents leading strand degradation from strand-associated nicks at stalled replication forks.Nucleic Acids Res. 2024 May 22;52(9):5121-5137. doi: 10.1093/nar/gkae192. Nucleic Acids Res. 2024. PMID: 38520409 Free PMC article.
-
Solution to the 50-year-old Okazaki-fragment problem.Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3358-3360. doi: 10.1073/pnas.1900372116. Epub 2019 Feb 15. Proc Natl Acad Sci U S A. 2019. PMID: 30770440 Free PMC article. No abstract available.
References
-
- Watson JD, Crick FHC. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. - PubMed
-
- Shchyolkina AK, et al. Parallel-stranded DNA with mixed AT/GC composition: Role of trans G⋅C base pairs in sequence dependent helical stability. Biochemistry. 2000;39:10034–10044. - PubMed
-
- Freese E. The arrangement of DNA in the chromosome. Cold Spring Harb Symp Quant Biol. 1958;23:13–18. - PubMed
-
- Cairns J. The chromosome of Escherichia coli. Cold Spring Harbor Symp Quant Biol. 1963;28:43–46. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases