Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
- PMID: 30617318
- DOI: 10.1038/s41591-018-0240-2
Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
Abstract
Asymptomatic left ventricular dysfunction (ALVD) is present in 3-6% of the general population, is associated with reduced quality of life and longevity, and is treatable when found1-4. An inexpensive, noninvasive screening tool for ALVD in the doctor's office is not available. We tested the hypothesis that application of artificial intelligence (AI) to the electrocardiogram (ECG), a routine method of measuring the heart's electrical activity, could identify ALVD. Using paired 12-lead ECG and echocardiogram data, including the left ventricular ejection fraction (a measure of contractile function), from 44,959 patients at the Mayo Clinic, we trained a convolutional neural network to identify patients with ventricular dysfunction, defined as ejection fraction ≤35%, using the ECG data alone. When tested on an independent set of 52,870 patients, the network model yielded values for the area under the curve, sensitivity, specificity, and accuracy of 0.93, 86.3%, 85.7%, and 85.7%, respectively. In patients without ventricular dysfunction, those with a positive AI screen were at 4 times the risk (hazard ratio, 4.1; 95% confidence interval, 3.3 to 5.0) of developing future ventricular dysfunction compared with those with a negative screen. Application of AI to the ECG-a ubiquitous, low-cost test-permits the ECG to serve as a powerful screening tool in asymptomatic individuals to identify ALVD.
Comment in
-
Artificial intelligence for the electrocardiogram.Nat Med. 2019 Jan;25(1):22-23. doi: 10.1038/s41591-018-0306-1. Nat Med. 2019. PMID: 30617324 No abstract available.
-
Artificial intelligence to improve the diagnosis of cardiovascular diseases.Nat Rev Cardiol. 2019 Mar;16(3):133. doi: 10.1038/s41569-019-0158-5. Nat Rev Cardiol. 2019. PMID: 30683888 No abstract available.
References
-
- McDonagh, T. A., McDonald, K. & Maisel, A. S. Screening for asymptomatic left ventricular dysfunction using B-type natriuretic Peptide. Congest. Heart Fail. 14, 5–8 (2008). - DOI
-
- Dargie, H. J. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet 357, 1385–1390 (2001). - DOI
-
- Pfeffer, M. A. et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N. Engl. J. Med. 327, 669–677 (1992). - DOI
-
- Priori, S. G. et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 36, 2793–2867 (2015). - DOI
-
- Betti, I. et al. The role of N-terminal PRO-brain natriuretic peptide and echocardiography for screening asymptomatic left ventricular dysfunction in a population at high risk for heart failure. The PROBE-HF study. J. Card. Fail. 15, 377–384 (2009). - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
