Evidence that the GCN2 protein kinase regulates reinitiation by yeast ribosomes
- PMID: 3061799
- PMCID: PMC454856
- DOI: 10.1002/j.1460-2075.1988.tb03231.x
Evidence that the GCN2 protein kinase regulates reinitiation by yeast ribosomes
Abstract
The yeast gene GCN4 produces an mRNA that has a long 5' 'untranslated' region containing four small open reading frames (ORFs) preceding the protein coding frame. This configuration suppresses the rate by which GCN4 protein is synthesized. However, translational derepression of the GCN4 mRNA occurs when yeast cells are grown under conditions of amino acid limitation. Such translational derepression requires the GCN2 protein kinase and the presence of the 5' most proximal ORF. In this study we show that a functional coupling between the translation of the first ORF and the amount of the GCN2 protein is responsible for the translational derepression of the GCN4 mRNA. Our evidence suggests that this coupling involves an increase in the ability of 40S ribosomal subunits that have translated the first frame to resume scanning and reinitiate translation at a downstream AUG independently of the base sequence in the intervening region.
Similar articles
-
Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control.Mol Cell Biol. 1991 Jan;11(1):486-96. doi: 10.1128/mcb.11.1.486-496.1991. Mol Cell Biol. 1991. PMID: 1986242 Free PMC article.
-
Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae.Mol Cell Biol. 1991 Jun;11(6):3027-36. doi: 10.1128/mcb.11.6.3027-3036.1991. Mol Cell Biol. 1991. PMID: 2038314 Free PMC article.
-
A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae.New Biol. 1991 May;3(5):511-24. New Biol. 1991. PMID: 1883814
-
Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2.Mol Microbiol. 1993 Oct;10(2):215-23. doi: 10.1111/j.1365-2958.1993.tb01947.x. Mol Microbiol. 1993. PMID: 7934812 Review.
-
Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells?RNA Biol. 2017 Dec 2;14(12):1660-1667. doi: 10.1080/15476286.2017.1353863. Epub 2017 Sep 15. RNA Biol. 2017. PMID: 28745933 Free PMC article. Review.
Cited by
-
The translational activator GCN3 functions downstream from GCN1 and GCN2 in the regulatory pathway that couples GCN4 expression to amino acid availability in Saccharomyces cerevisiae.Genetics. 1990 Nov;126(3):549-62. doi: 10.1093/genetics/126.3.549. Genetics. 1990. PMID: 2249755 Free PMC article.
-
Amino Acid Signaling for TOR in Eukaryotes: Sensors, Transducers, and a Sustainable Agricultural fuTORe.Biomolecules. 2022 Mar 2;12(3):387. doi: 10.3390/biom12030387. Biomolecules. 2022. PMID: 35327579 Free PMC article. Review.
-
Unravelling the story of protein misfolding in diabetes mellitus.World J Diabetes. 2011 Jul 15;2(7):114-8. doi: 10.4239/wjd.v2.i7.114. World J Diabetes. 2011. PMID: 21860696 Free PMC article.
-
The scanning model for translation: an update.J Cell Biol. 1989 Feb;108(2):229-41. doi: 10.1083/jcb.108.2.229. J Cell Biol. 1989. PMID: 2645293 Free PMC article. Review.
-
Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control.Mol Cell Biol. 1991 Jan;11(1):486-96. doi: 10.1128/mcb.11.1.486-496.1991. Mol Cell Biol. 1991. PMID: 1986242 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases