Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Dec 20:9:3059.
doi: 10.3389/fimmu.2018.03059. eCollection 2018.

Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment

Affiliations
Review

Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment

Chunmei Fu et al. Front Immunol. .

Abstract

Dendritic cells (DCs) play a central role in the regulation of the balance between CD8 T cell immunity vs. tolerance to tumor antigens. Cross-priming, a process which DCs activate CD8 T cells by cross-presenting exogenous antigens, plays a critical role in generating anti-tumor CD8 T cell immunity. However, there are compelling evidences now that the tumor microenvironment (TME)-mediated suppression and modulation of tumor-infiltrated DCs (TIDCs) impair their function in initiating potent anti-tumor immunity and even promote tumor progression. Thus, DC-mediated cross-presentation of tumor antigens in tumor-bearing hosts often induces T cell tolerance instead of immunity. As tumor-induced immunosuppression remains one of the major hurdles for cancer immunotherapy, understanding how DCs regulate anti-tumor CD8 T cell immunity in particular within TME has been under intensive investigation. Recent reports on the Batf3-dependent type 1 conventional DCs (cDC1s) in anti-tumor immunity have greatly advanced our understanding on the interplay of DCs and CD8 T cells in the TME, highlighted by the critical role of CD103+ cDC1s in the cross-priming of tumor antigen-specific CD8 T cells. In this review, we will discuss recent advances in anti-tumor CD8 T cell cross-priming by CD103+ cDC1s in TME, and share perspective on future directions including therapeutic applications and memory CD8 T cell responses.

Keywords: CD103+ cDC1s; CD8 T cell immunity; anti-tumor immunity; cancer immunotherapy; cross-priming; tumor microenvironment.

PubMed Disclaimer

Figures

Figure 1
Figure 1
cDC1s and priming of tumor-antigen-specific CD8 T cells in the tumor microenvironment (TME) and tumor-draining lymph nodes (tdLNs). Migratory CD103+ cDC1s in the TME take up tumor antigens (black dots), and transport tumor antigens to tdLN by migrating to the tdLN in a CCR7-dependent mechanism. Once in the tdLN, cross-presenting CD103+ cDC1s prime naive tumor antigen-specific CD8 T cells to become effector CD8 T cells. Cross-presenting CD103+ cDC1s also transfer tumor antigens to other resident myeloid cells including CD8α+ cDC1s that are also likely involved in priming naive CD8 T cells in tdLN. cDC1s in the TME produce CXCL9/10 to recruit primed effector CD8 T cells into TME, where they are re-stimulated by CD103+ cDC1s leading to the efficient killing of tumor cells. The function of other DCs such as pDCs and cDC2s in CD8 T cell priming is less understood.

References

    1. Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol. (2011) 3:17–30. 10.1039/C0IB00046A - DOI - PubMed
    1. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol. (2018) 9:14. 10.3389/fimmu.2018.00014 - DOI - PMC - PubMed
    1. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science (1991) 254:1643–7. 10.1126/science.1840703 - DOI - PubMed
    1. Slingluff CL, Jr, Cox AL, Stover JM, Jr, Moore MM, Hunt DF, Engelhard VH. Cytotoxic T-lymphocyte response to autologous human squamous cell cancer of the lung: epitope reconstitution with peptides extracted from HLA-Aw68. Cancer Res. (1994) 54:2731–7. - PubMed
    1. Boon T, Coulie PG, Van den Eynde B. Tumor antigens recognized by T cells. Immunol Today (1997) 18:267–8. 10.1016/S0167-5699(97)80020-5 - DOI - PubMed

Publication types

MeSH terms

Substances