Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 18;84(2):900-908.
doi: 10.1021/acs.joc.8b02792. Epub 2019 Jan 8.

Diarylborinic Acid-Catalyzed, Site-Selective Sulfation of Carbohydrate Derivatives

Affiliations

Diarylborinic Acid-Catalyzed, Site-Selective Sulfation of Carbohydrate Derivatives

Daniel Gorelik et al. J Org Chem. .

Abstract

Sulfated carbohydrates have been implicated in diverse biological processes, with the position and extent of sulfation of a glycoside often playing important roles in determining the affinity and specificity of its binding to a biomolecular partner. Methods for the site-selective introduction of sulfate groups to carbohydrates are thus of interest. Here, we describe the development of a diarylborinic acid-catalyzed protocol for selective sulfation of pyranoside derivatives at the equatorial position of a cis-1,2-diol group. This method, which employs the sulfur trioxide-trimethylamine complex as the electrophile, has been employed for installation of a sulfate group at the 3-position of a range of galacto- and mannopyranosides, including substrates having a free primary OH group. By using a full equivalent of the diarylborinic acid, selective syntheses of more complex monosulfated glycosides, namely, a 3'-sulfolactose derivative and 3'-sulfo-β-galactosylceramide, have been accomplished. Preliminary kinetics experiments suggested that the catalyst resting state is a tetracoordinate diarylborinic ester that reacts with the SO3 complex in the turnover-limiting step. Catalyst inhibition by the pyranoside sulfate product and trialkylamine byproduct of the reaction was demonstrated.

PubMed Disclaimer

Publication types

LinkOut - more resources