Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2019 Jun;33(6):861-863.
doi: 10.1038/s41433-018-0324-8. Epub 2019 Jan 8.

A renaissance of teleophthalmology through artificial intelligence

Affiliations
Editorial

A renaissance of teleophthalmology through artificial intelligence

Edward Korot et al. Eye (Lond). 2019 Jun.
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Current complicated clinical pathways in the United States for patients to be seen by an ophthalmic subspecialist. Arrowed lines represent potential impact points of artificial intelligence for increased triage efficiency. Current research includes AI integration into patient facing eye exam kiosks, ophthalmic point of care imaging devices, and remote image reading

References

    1. Ting DSW, Cheung CYL, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318:2211–23. doi: 10.1001/jama.2017.18152. - DOI - PMC - PubMed
    1. Schlegl T, Waldstein SM, Bogunovic H, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology. 2018;125:549–58. doi: 10.1016/j.ophtha.2017.10.031. - DOI - PubMed
    1. Lee CS, Tyring AJ, Deruyter NP, et al. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. 2017;8:3440–8. doi: 10.1364/BOE.8.003440. - DOI - PMC - PubMed
    1. Wen JC, Lee CS, Keane PA, Xiao S, Wu Y, Rokem A, et al. Forecasting Future Humphrey Visual Fields Using Deep Learning. arXiv [cs.CV]. 2018. Available at: https://www.arxiv.org/abs/1804.04543. - PMC - PubMed
    1. De Fauw Jeffrey, Ledsam Joseph R., Romera-Paredes Bernardino, Nikolov Stanislav, Tomasev Nenad, Blackwell Sam, Askham Harry, Glorot Xavier, O’Donoghue Brendan, Visentin Daniel, van den Driessche George, Lakshminarayanan Balaji, Meyer Clemens, Mackinder Faith, Bouton Simon, Ayoub Kareem, Chopra Reena, King Dominic, Karthikesalingam Alan, Hughes Cían O., Raine Rosalind, Hughes Julian, Sim Dawn A., Egan Catherine, Tufail Adnan, Montgomery Hugh, Hassabis Demis, Rees Geraint, Back Trevor, Khaw Peng T., Suleyman Mustafa, Cornebise Julien, Keane Pearse A., Ronneberger Olaf. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine. 2018;24(9):1342–1350. doi: 10.1038/s41591-018-0107-6. - DOI - PubMed

Publication types