Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar;103(5):2217-2228.
doi: 10.1007/s00253-018-09593-y. Epub 2019 Jan 9.

Discovery and identification of antimicrobial peptides in Sichuan pepper (Zanthoxylum bungeanum Maxim) seeds by peptidomics and bioinformatics

Affiliations

Discovery and identification of antimicrobial peptides in Sichuan pepper (Zanthoxylum bungeanum Maxim) seeds by peptidomics and bioinformatics

Xiaoyan Hou et al. Appl Microbiol Biotechnol. 2019 Mar.

Abstract

Antimicrobial peptides (AMPs) have generated growing attention because of the increasing bacterial resistance. However, the discovery and identification of AMPs have proven to be challenging due to the complex purification procedure associated with conventional methods. For the reasons given above, it is necessary to explore more efficient ways to obtain AMPs. We established a new method for discovery and identification of novel AMPs by proteomics and bioinformatics from Zanthoxylum bungeanum Maxim seeds protein hydrolysate directly. This process was initially achieved by employing ultra-performance liquid chromatography-electrospray ionization-mass spectrometry/mass (UPLC-ESI-MS/MS) spectrometry to identify peptides derived from Z. bungeanum Maxim seed protein hydrolysates. Three online servers were introduced to predict potential AMPs. Sixteen potential AMPs ranging from 1.5 to 2.7 kDa were predicted and chemically synthesized, one of which, designated NP-6, inhibited activity against all the tested strains according to antimicrobial assay. Time-killing assay indicated that NP-6 could quickly kill almost all the Escherichia coli within 180 min and Staphylococcus aureus at 360 min. Moreover, the simulation 3D structure of NP-6 was consisted of α-helix and random coil, and this was verified by circular dichroism (CD) spectra. At last, the scanning electron microscope (SEM) images of E. coli and S. aureus treated by NP-6 demonstrated that NP-6 had a significant effect on bacteria cell morphology. Our findings provide an efficient approach for discovery of AMPs, and Z. bungeanum Maxim seeds may be a nature resource to extract antimicrobial agents.

Keywords: Antimicrobial peptides; Bioinformatics; Peptidomics; Prediction; Zanthoxylum bungeanum Maxim seeds.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources