Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;21(1):94-105.
doi: 10.1007/s12094-018-02017-3. Epub 2019 Jan 9.

SEOM clinical guidelines on cardiovascular toxicity (2018)

Affiliations

SEOM clinical guidelines on cardiovascular toxicity (2018)

J A Virizuela et al. Clin Transl Oncol. 2019 Jan.

Abstract

One of the most common side effects of cancer treatment is cardiovascular disease, which substantially impacts long-term survivor's prognosis. Cardiotoxicity can be related with either a direct side effect of antitumor therapies or an accelerated development of cardiovascular diseases in the presence of preexisting risk factors. Even though it is widely recognized as an alarming clinical problem, scientific evidence is scarce in the management of these complications in cancer patients. Consequently, current recommendations are based on expert consensus. This Guideline represents SEOM's ongoing commitment to progressing and improving supportive care for cancer patients.

Keywords: Cancer; Cardiotoxicity; Chemotherapy; Early detection; Risk assessment.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest

JAV has nothing to disclose. AMG has nothing to disclose. RDP has nothing to disclose. AS reports speaker honoraria from Roche, Pfizer, Astra Zeneca, Novartis, MSD and Pierre Fabre and Advisory Board from Roche, Tesaro, Clovis, Astra Zeneca and Novartis, outside the submitted work has nothing to disclose. RA has nothing to disclose. CB reports grants from LEO Pharma, Roche, MSD, ROVI, Sanofi, BMS and Mylan. Has received speaker honoraria from Esteve and Kyowa Kirin and Advisory boards from Kyowa kirin, Omakase and Roche, outside the submitted work. SC has nothing to disclose. JG reports speaker honoraria from Roche, Pfizer and Novartis, and Advisory board from Roche and Novartis, outside the submitted work. SG reports advisory boards from AstraZeneca, Celgene, Roche y Novartis. TL reports honoraria for teaching from Janssen-Cilag, Teva, Gilead, Daiichi, Novartis and Pfizer, outside the submitted work.

Ethical standards

The current study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

For this type of study formal consent is not required.

Figures

Fig. 1
Fig. 1
Monitoring algorithm in patients receiving drugs at risk of heart failure. Modified from [4]. 3D 3-dimensional, CTRCD cancer therapeutics-related cardiac dysfunction, CVRFs cardiovascular risk factors, GLS global longitudinal strain, LVEF left ventricular ejection fraction, NT-proBNP N-terminal pro-B type natriuretic peptide, TTE transthoracic echocardiography. Ideally, a specialist cardio-onco-hematology clinic. b Reevaluation of LVEF is recommended before treatment completion if the cumulative dose exceeds 240 mg/m2. In these patients, the LVEF should be regularly monitored until the end of treatment. c In patients with low cardiovascular risk and without history of cardiotoxic treatment, determination of troponin levels before each cycle reduces the number of echocardiograms required and limits their use to symptomatic patients or those with troponin elevation
Fig. 2
Fig. 2
Corrected QT interval calculation using the Fridericia’s formula [18] and QT interval-related toxicity grading. Fridericia’s formula (QTc = QT interval/RR3) is the preferred correction formula for oncology population. (QTc corrected QT interval, ms milliseconds, s seconds)
Fig. 3
Fig. 3
Algorithm for antithrombotic therapy in patients with cancer-related atrial fibrillation. Indication algorithm for anticoagulation in patients with cancer-related atrial fibrillation. Figure modified from [4]. 5-FU 5-fluorouracil, CHA2DS2-VASc congestive heart failure, hypertension, age > 75 years (dual), diabetes mellitus, stroke (dual), vascular disease, age 65–74 years, and sex (female), CrCl creatinine clearance, CYP cytochrome P450, DOACs direct oral anticoagulants, EPO erythropoietin, HAS-BLED hypertension, abnormal renal and liver function, stroke, history of or predisposition to bleeding, labile international normalized ratio, age > 65 years, and concomitant use of drugs or alcohol, LMWH low-molecular-weight heparin, P-gp P-glycoprotein. aFor patients with very high bleeding risk and indication for anticoagulation the decision should be individualized. Considered in a multidisciplinary discussion if left atrial appendage occlusion. bAnticoagulant selection depends on clinical status, comorbidities, and possible interactions with the patient’s anticancer therapy. cCurrently, there is limited scientific evidence on its use in patients under active anticancer therapy and atrial fibrillation
Fig. 4
Fig. 4
Mechanism and prevention of ischemic heart disease during cancer treatment. *Sustained vascular disease: more permanent and progressive disease, even after discontinuation of treatment. **Cardiovascular risk calculator: http://secardiologia.es/multimedia/apps/5696-calculadora-riesgo-cardiovascular. High-risk patients: radiotherapy in patients whose target volume includes at least part of the heart + 1 risk factor (< 15 or > 65 years-old at treatment; > 30 Gy or > 2 Gy/day; treatment with other cardiotoxic agents; previous ischemic heart disease, or preexisting classical cardiovascular risk factors). DAPT dual antiplatelet therapy, ACS acute coronary syndromes, CT computed tomography, VEGF vascular endothelial grow factor, CVRF cardiovascular risk factors, ACEI angiotensin converting enzyme inhibitors, ARB angiotensin II receptor antagonist, BB beta-blockers, IHD ischemic heart disease, DM diabetes mellitus, CKD chronic kidney disease
Fig. 5
Fig. 5
Management algorithm for suspected autoimmune myocarditis

Comment in

References

    1. Hooning MJ, Botma A, Aleman BM, Baaijens MH, Bartelink H, Klijn JG, et al. Long-term risk for cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst. 2007;99:365–375. doi: 10.1093/jnci/djk064. - DOI - PubMed
    1. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12(9):547–558. doi: 10.1038/nrcardio.2015.65. - DOI - PubMed
    1. Zamorano JL, Lancellotti P, Rodríguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC) Eur Heart J. 2016;37(36):2768–2801. doi: 10.1093/eurheartj/ehw211. - DOI - PubMed
    1. López-Fernández T, Martín-García A, Santaballa Beltrán A, Montero LA, García Sanz R, Mazón Ramos P, et al. Cardio-onco-hematology in clinical practice. Position paper and recommendations. Rev Esp Cardiol (Engl Ed). 2017;70(6):474–486. doi: 10.1016/j.recesp.2016.12.021. - DOI - PubMed
    1. Herrmann J, Lerman A, Sandhu NP, Villarraga HR, Mulvagh SL, Kohli M. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89:1287–1306. doi: 10.1016/j.mayocp.2014.05.013. - DOI - PMC - PubMed

MeSH terms